
Investigating the Usefulness of Formal Methods for
Developing Industrial Software Systems: A Systematic

Literature Review
Alex Pawelczyk

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

Abstract
The objective of this paper is to present the current evi-
dence relative to the usefulness of formal methods (FMs) for
developing industrial software systems. As such insight is
important for project managers of software development
firms, this work presents a systematic literature review (SLR)
of empirical studies that investigate if applying FMs and tools
to the software development process of industrial comput-
ing applications can be useful. The SLR synthesizes evidence
from 12 primary studies and analyzes how useful FMs are
when applied by professionals in industry. The results of the
SLR suggest that FMs are useful in a wide range of domains
when applied to the development process of safety-critical
systems. Using FMs and tools can lead to a lower defect rate,
less ambiguity in system specifications, and a shorter time
to market. Non-experts benefit from user-friendly FM tools,
but the main drawback of FMs is the initial learning time
required to learn a method or tool.

Keywords: formal methods, systematic literature review
ACM Reference Format:
Alex Pawelczyk. 2020. Investigating the Usefulness of Formal Meth-
ods for Developing Industrial Software Systems: A Systematic Lit-
erature Review. In CS646: Software Design and Architecture, Aug.
2, 2020, Waterloo, ON . ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/1122445.1122456

1 Introduction
Modern-day software systems are becoming increasingly de-
pendant on software components, the complexity of systems
with embedded software is rapidly growing, and maintain-
ing reliability in software-intensive systems is difficult to do
[30]. A popular area of research that can help mitigate these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON
© 2020 Association for Computing Machinery.
https://doi.org/10.1145/1122445.1122456

challenges is the application of formal methods (FMs) to the
development process of industrial software systems. FMs are
mathematically rigorous techniques and tools that are used
for the specification, design, and verification of software and
hardware systems [13]. FMs aim to improve the reliability
and dependability of software systems by supporting pro-
gram development and providing a foundation for describing
and reasoning about complex systems. In addition, FMs can
reveal ambiguity, incompleteness, and inconsistency in a
system [61].
A problem with FMs is that their usefulness in the devel-

opment of industrial software applications is one of the most
controversial issues and source of debates within the soft-
ware engineering community [10]. Many people argue that
the use of FMs during the software development produces
better quality programs of the highest integrity, reduces the
time needed for software development, and decreases the
cost of development [9, 10, 22, 53, 65]. Others argue that FMs
drive up the initial cost of product development, increase
time to market, do not scale well with the size and complex-
ity of real-world systems, and cannot be applied to certain
classes of systems (e.g., those that employ machine learning)
[37, 46, 47, 51]. Thus, the primary motivation of this work
is to review the state of the art usage of FMs in industrial
domains and identify the successes and failures.
A secondary motivation of this research stems from the

fact that there have been many reports on successful ap-
plications of FMs to real-world industrial projects, but the
widespread adoption of FMs in industrial domains is still
an exception [4, 33, 58]. Project managers at software de-
velopment firms may be hesitant to adopt new practices
unless there is reliable evidence that points to the success
of a particular technique. Since the results of one study are
not enough to draw meaningful conclusions about the gen-
eral usefulness of FMs in industrial settings, it is important
to conduct research that summarizes the existing evidence
concerning this topic. Moreover, synthesizing evidence from
a large number of studies may lead to the discovery of open
research questions that need to be addressed before FMs
become widely adopted in industry.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON Alex Pawelczyk

This work presents a systematic literature review (SLR)
that investigates the usefulness of FMs and tools when ap-
plied to the software development process of industrial soft-
ware systems. The primary objective of the SLR is to summa-
rize all existing information about the state of the art usage
of FMs in industrial domains in a thorough and unbiased
manner. The SLR derives conclusions from the results of 12
primary studies into a scientific summary of evidence rele-
vant to the degree of usefulness that FMs have for developing
industrial applications. Additionally, the SLR presents any
conflicting findings from the analysis, identifies gaps in the
existing body of knowledge, discusses the implications of
these results for managers and executives of software devel-
opment companies, and suggests areas for future research.
The rest of this paper is organized as follows. Section 2

summarizes the results of past SLRs and surveys on FMs.
Section 3 backgrounds two key branches of FMs: formal
specification and formal verification. Section 4 provides an
overview of the review protocol that is applied to the SLR.
Section 5 details how the SLR is conducted. Section 6 reports
the results of the SLR based on the synthesis of evidence
from a collection of empirical studies. Section 7 discusses the
key findings and implications of the SLR. Section 8 identifies
the limitations of the SLR. Section 9 proposes areas for future
work in FMs research, and Section 10 presents concluding
remarks.

2 Related Work
In 1996, Clarke et. al [15] assessed the state of the art in for-
mal specification and verification, focusing on model check-
ing and theorem proving. The authors propose definitions for
formal specification, model checking, and theorem proving,
along with case studies where FMs were used to successfully
specify commercial and safety-critical software. Further case
studies are presented where FMs were used to verify protocol
standards and hardware designs. The authors also identify
future directions for research in FMs, including fundamental
concepts, methods and tools, integration of methods, and ed-
ucation and technology transfer. Concluding remarks state
that the authors expect the role of FMs in the entire system-
development process will increase, but progress will depend
on continued support for research on new specification lan-
guages and new verification techniques.
In 1999, Kern and Greenstreet [26] surveyed a variety of

formal techniques and frameworks that were proposed in the
literature and incorporated into actual designs of hardware.
The specification frameworks that they describe include
temporal logic, predicate logic, abstraction, refinement, and
the containment between w-regular languages. The verifica-
tion techniques that they describe include model checking,
automata-theoretic techniques, automated theorem proving,
and hybrid approaches that integrate these verification tech-
niques. Kern and Greenstreet also present a selection of case

studies where FMs were applied to industrial-scale hardware
designs, including microprocessors, floating-point hardware,
protocols, memory subsystems, and communications hard-
ware.

Woodcock et. al [65] described the current state of the
art (as of 2009) in the industrial use of formal methods. The
authors undertook a survey where data was collected be-
tween November 2007 and December 2008 on 62 industrial
projects known to have employed FMs. The largest appli-
cation domain where FMs were employed was transport,
and other major domains were the financial sector, defence,
and telecommunications. The effect on time taken for de-
velopment was on average beneficial, where three times as
many studies reported a reduction in time, rather than an
increase. Several responses noted an increase in time in the
specification phase, which may or may not have resulted
in a decrease in time later in the development process. Five
times as many projects reported reduced cost as opposed to
an increase in cost, 92% of all cases reported an increase in
software quality compared to other techniques, and no cases
reported a decrease in quality. Improvements in software
quality are related to the detection of faults (36%), improve-
ments in design (12%), increased confidence in correctness
(10%), improved understanding (10%), and early identifica-
tion of faults or other issues (4%).
Weyns et. al [59] conducted an SLR based on 75 primary

studies to identify trends in the application of FMs in self-
adaptive systems, what kinds of FMs have been used in self-
adaptive systems, and for which adaptation concerns were
FMs used for. Although the authors found that there was an
increase in the use of FMs in self-adaptive systems between
2001 and 2011, there was a lack of approaches that employ
FMs for assuring that self-adaptive systems satisfy user re-
quirements and meet the expected quality attributes. Weyns
et. al also report that amajority of researchers employ regular
algebraic notations for both modeling and property speci-
fication of self-adaptive systems. The top self-adaptation
concerns that FMs are used for are efficiency and perfor-
mance (32.0%), reliability (26.7%), guaranteeing functionality
(22.7%), and flexibility (18.7%). Moreover, FMs were mostly
used for the development of embedded systems (46.7%), fol-
lowed by service-based systems (26.7%).

2019 saw an uptake in surveys on the applications of FMs
to various domains. Nanda and Grant [41] focused on the
use of formal specification in safety-critical systems and
report that this method has made safety-critical software
development more consistent, complete, and less ambigu-
ous. They conclude that formal specification at the initial
phase of software development is necessary and should be
universally adopted for safety-critical systems. Sinha et. al
[52] conducted a survey on static FMs for creating more de-
pendable industrial automation systems. They conclude that
static approaches are more useful during the earlier stages



Investigating the Usefulness of Formal Methods in Industry CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON

of the software development life cycle, where bugs and in-
consistencies are cheaper to find and correct. Murray and
Anisi [39] surveyed formal verification techniques for smart
contracts running on distributed ledgers such as blockchain.
They conclude that the current state of the art formal verifica-
tion methods are not suitable for complex contracts, but they
can handle simple smart contracts and simplified models.

3 Two Key Branches of FMs
3.1 Formal Specification
A formal specification is the expression, in some formal or
mathematical syntax and at some level of abstraction, of
a collection of properties that some system should satisfy
[32]. Formal specifications can be used to describe a system,
analyze the behavior of a system, and verify key properties
of interest through rigorous and effective reasoning tools
[24]. The syntax that is used to write a formal specification
is typically textual, but can also be graphical. A semantics
is also provided, where a precise meaning is given to each
description in the specification. This helps overcome many
of the problems that arise from specifications written in a
natural language, such as ambiguity.
One of the benefits of employing formal specifications

in the software development process is that the quality of
the software can be increased, leading to reduced debug-
ging effort later on in the project cycle [24]. Developing
a formal specification can also provide valuable insights
and understanding of the software requirements and de-
sign. Moreover, formal specifications are crucial for design-
ing, validating, documenting, communicating, reengineering,
and reusing software solutions [32]. Formality helps obtain
higher-quality specifications within such processes, while
also providing the basis for their automated support.

3.2 Formal Verification
Formal verification uses the formal specifications of a hard-
ware or software system to ensure that a design conforms to
some precisely expressed notion of functional correctness
[8]. As the complexity of a system design increases, the num-
ber of states to be exercised also increases. This results in a
time-consuming task of generating and checking such states,
along with an additional effort to assure acceptable test cov-
erage metrics so the design can be considered fully verified
and matching the specification. Formal verification enables
the coverage of all possible states in a design by running a
formal proof, rather than a simulation. Once the formal proof
assures a statement as true, the negation of such statement
is considered impossible to be reached [49].

Formal verification is beneficial because it can be used to
conclusively prove that certain properties of a system always
hold [8]. Formal verification can also lead to an increase in
software quality and a reduction in time-to-market [63]. The
underlying drivers that lead to a higher quality and a shorter

Figure 1. Overview of the SLR review protocol (adapted
from [12, 59]).

time-to-market are early availability, higher coverage, and
effective integration. Early availability is made possible be-
cause formal verification can start as soon as the logic of a
design project is compiled, providing a limited setup cost
relative to simulation testbenches. Formal verification can
also cover large state spaces, leading to the detection of bugs
which would have been difficult to manually target with
simulation. In addition, using formal verification at the unit
level can lead to a reduction in system simulation time and
an increase in stabilization [63].

4 The Review Protocol
This study follows the principles of an SLR, which is amethod
for identifying, evaluating, and interpreting all available re-
search relevant to a particular research question, topic area,
or phenomenon of interest [3]. One researcher (the author)
was involved in conducting the SLR, and the first step in-
volved defining the review protocol (see Figure 1).

The first step involves defining the research questions
that guide this work. These questions form the foundation
of the SLR, and answering these questions will provide in-
terested stakeholders with valuable information about FMs
in industry.
The next step of the review protocol focuses on identi-

fying relevant literature that can help answer the research
questions of interest. To help retain focus and organization,
a search scope and strategy is defined before searching for
relevant literature. During the initial search, any papers that
may be relevant to the research questions are collected.

After collecting an initial pool of literature, primary stud-
ies are selected based on a set of inclusion and exclusion
criteria. These criteria are used to ensure that the primary
studies of the SLR provide relevant data towards answering
the research questions.



CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON Alex Pawelczyk

Once the primary studies are identified, the quality of
each study is manually assessed based on a set of quality
criteria. Next, relevant data items (derived from the primary
studies) are collated and summarized to present meaningful
information. Using this information, evidence is synthesized
in the form of a written report and presented in a manner
that answers the research questions of this work.

5 Conducting the Review
5.1 Research Questions
The general goal of the SLR is formulated using the Goal
Question Metric (GQM) approach [5]:

• Purpose: Understand and characterize
• Issue: the usefulness of FMs and tools
• Object: in the software development process of indus-
trial software systems

• Viewpoint: from the perspectives of professional soft-
ware developers and management.

From the specification of this general goal, meaningful
research questions can be derived that characterize the goal
in a quantifiable way:

• RQ1: “What types of FMs and tools are used for speci-
fying and verifying industrial software systems?"

• RQ2: “How useful are FMs and tools when applied to
industrial software systems?"

RQ1 is motivated by the need to gain insight into the
types of FMs and tools that are being used in industry. FMs
research has an extensive history, and there are a plethora
of studies that propose novel FMs and tools that ease the
integration process of FMs into the software development
process. However, a key area of interest for this SLR is to
find out which techniques are being used by real-world com-
panies in industry. The aim is to identify if there is a group
of FMs or tools that are being used more often in industry
than others.
RQ2 focuses on identifying both successful and unsuc-

cessful applications of FMs or tools in industrial settings. A
method or tool is considered to be useful if it produces soft-
ware of higher quality, increases knowledge about a system,
shortens time to market, or lowers the project development
cost compared to the normal business practices of an organi-
zation.

5.2 Identifying Relevant Literature
The scope of the search is defined by the dimensions of time
and space. Regarding time, the SLR includes studies that
were published between Jan. 2010 and Jun. 2020. 2010 was
chosen as the starting year because the primary objective
of the SLR is to summarize all existing information about
the state of the art usage of FMs for developing industrial
software systems. In the context of the SLR, state of the art
refers to studies published within the last 10 years.

Regarding the space dimension, the SLR searches different
online databases for publications related to FMs. The aim
of an SLR is to find as many primary studies that relate to
the research questions as possible using an unbiased search
strategy [3]. Khan et. al [27] recommend searching multi-
ple databases to obtain as many citations as possible and to
avoid publication bias. Using the search string (“formal meth-
ods" OR “formal-methods") AND (“industry" OR “industrial"),
the first phase of identifying relevant literature involved
searching the following three online databases: ACM Digital
Library, IEEE Explore, and ScienceDirect.
After searching the online databases and downloading

relevant studies, the identification of relevant literature con-
tinued into the second phase. Here, the snowballing tech-
nique was applied and the references of all papers found in
the primary search phase were reviewed. Any references
that were deemed suitable were added to the existing list
of studies. The end of this phase resulted in a total of 192
primary study candidates.

5.3 Inclusion and Exclusion Criteria
After collecting a pool of relevant literature, primary studies
were selected based on different inclusion and exclusion cri-
teria. The primary inclusion criterion aims to select studies
that investigate the usefulness of FMs for developing indus-
trial software systems. These studies feature professional
software developers using FMs during the development pro-
cess of real-world projects. Moreover, the studies investigate
how useful these techniques are. A secondary inclusion cri-
terion targets studies that investigate the usefulness of FM
tools in industry. Due to the complex nature of FMs, many
companies resort to user-friendly tools that ease the integra-
tion of FMs into the software development process. Thus,
investigating the usefulness of these tools is an important
area of research.
The primary exclusion criterion is composed of studies

that propose novel FMs and do not apply them to industrial
projects. These studies tend to focus on the theory and details
of the proposed methods, rather than demonstrating how
they can be applied to real-word scenarios. Studies are also
excluded if they meet at least one of the following criteria:

• Criterion 1: FM studies that are targeted for CS/SE
education.
Rationale: These studies tend to focus on techniques
that can help students effectively learn about formal
methods, while the aim of this SLR is to analyze the
usefulness of FMs when applied to the development
process of industrial software systems.

• Criterion 2: FM studies that are conducted in experi-
mental settings.
Rationale: Experiments typically use students as sub-
jects, which are not a good representation of the pro-
fessional programmers that apply FMs to industrial



Investigating the Usefulness of Formal Methods in Industry CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON

projects. Even if an experiment uses professional de-
velopers as subjects, completing programming tasks
during experiments typically takes a short amount of
time, ranging anywhere from one hour to a few days.
This is an unrealistic scenario in a real-world work en-
vironment, where projects are completed over a series
of months, if not years. Moreover, it is difficult tomatch
the complexity of an experimental programming task
to that of an industrial-sized project.

• Criterion 3: Studies written in languages other than
English or Polish.
Rationale: The author is only capable of reading in
English or Polish. However, this may result in relevant
literature being omitted from the SLR (see Section 8).

5.4 Quality Assessment
After the selection of 12 primary studies from the pool of
192 candidate studies, the quality of each primary study
was assessed based on the 11 criteria used in the Dybå and
Dingsøyr SLR of Agile methods (see Table 1) [18]. These
criteria assess the reporting, rigor, credibility, and relevance
of the remaining studies. Reporting is considered to be of
high quality if the rationale, aims, and context of a study are
clearly stated. Rigor refers to whether a thorough and appro-
priate approach was applied to the key research methods in a
study. Studies are credible if the findings are well-presented
and meaningful, and relevance describes the usefulness of
findings to the software engineering research community
and industry.

With regards to Table 1, questions 1-3 relate to the quality
of the reporting of the rationale, aims, and context of a study.
Questions 4-8 relate to the rigor of the research methods that
were used to establish the trustworthiness of the findings.
Questions 9 and 10 assess the credibility of study methodolo-
gies and help ensure that that the findings of different studies
are valid and meaningful. Finally, question 11 assesses the
relevance of a study to the software engineering research
community and industry.
Evaluating each potential primary study based on these

11 criteria provides a measure of the extent to which the
findings of a particular study can make a valuable contribu-
tion to this SLR. Each quality question is either answered as
yes (1 point) or no (0 points), so the quality score of a study
ranges between 0 (Very poor) to 11 (very good).

5.5 Data Extraction
A predefined extraction form was used to obtain relevant
data from each of the 12 primary studies included in the
SLR. Relevant data includes what FMs or tools are used in
a study, what domain the study is conducted in, and how
useful the approaches are in practice. The data extraction
form is an important tool that enables the recording of the
full details of the studies under review and the details on
how each study addresses the research questions of this

Table 1. Quality criteria for selection of primary studies
(adapted from [18])

Questions

1. Is the paper based on empirical research, rather than a
“lessons learned" report based on expert opinion?
2. Are the aims of the research clearly stated?
3. Was the research environment and context of the re-
search adequately described?
4. Was the research design appropriate to address the
aims of the research?
5. Was the recruitment strategy appropriate to the aims
of the research?
6. Was there a control group with which to compare
treatments?
7. Was the data collected in a way that addressed the
research issue?
8. Was the data analysis sufficiently rigorous?
9. Has the relationship between researcher and partici-
pants been adequately considered?
10. Is there a clear statement of findings?
11. Is the study of value for research or practice?

SLR. In addition, the data extraction form is a useful tool for
organizing information from a large number of studies.

6 Results
This section reports the results of the SLR based on the
research questions defined in Section 5.1.

6.1 Research Question 1
“What types of FMs and tools are used for specifying
and verifying industrial software systems?"
Two studies report report on the use the Analytical Soft-

ware Design (ASD) method at Philips Healthcare [21, 45].
ASD is a component-based, model-driven technology that
combines the application of FMs (e.g., Sequence-Based Spec-
ification (SBS) [14], Communicating Sequential Processes
(CSP) [25], and the model checker Failure Divergence Re-
finement (FDR2) [1]) with various software development
methods, including the Box Structure Development Method
(BSDM), Stepwise Refinement, and Component-Based Soft-
ware Development [44]. The ASD approach is particularly
useful for developing complex control software and event-
driven systems where concurrency plays a crucial role. An
ASD specification is written with SBS and is used to build
models of the functional behavior of ASD components. Us-
ing ASD models, formal models like CSP and source code



CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON Alex Pawelczyk

implementations (written in C++ or C#) can be automatically
generated. Via this mechanized transformation, ASD guar-
antees consistency between specification, verified models,
and implementation code of ASD components [44].

Newcombe et. al [42] delineate that engineers at Amazon
Web Services use TLA+ for writing formal specifications.
TLA+ is a formal specification language based on basic set
theory and predicates. The TLA+ specification language ei-
ther uses conventional mathematical reasoning or the TLC
model checker to show that a system design correctly imple-
ments the desired correctness properties. One of the main
benefits of using TLA+ is that it can be used to write precise,
formal descriptions of almost any kind of discrete system
[31]. Engineers at Amazon Web Services also use PlusCal,
a formal specification language that can be automatically
translated to TLA+ with the press of a single key. PlusCal
is intended to be a direct replacement for pseudo-code and
resembles an imperative programming language (similar to
C-style programming languages) that uses TLA+ for expres-
sions and values. PlusCal is a more user-friendly language
that requires no prior familiarity with TLA+. However, TLA+
provides greater flexibility over PlusCal, where developers
have the freedom to choose and adjust different levels of
abstraction.

Rodrigues et. al [50] focus on the use of Z notation for for-
mal specification in Agile projects. The Z notation is based
upon set theory (i.e., standard set operators, set comprehen-
sions, Cartesian products, and power sets) and mathematical
logic (i.e., first-order predicate calculus) [64]. Z uses schemas,
or patterns of declaration and constraint, to structure math-
ematical objects and their properties. Every object in the Z
notation has a unique type that is represented as a maximal
set in the current specification. In combination with natural
language, Z can be used to write formal specifications. Z is
not intended for the description of non-functional properties
(i.e., usability, performance, size, and reliability), nor is it
intended for the description of timed or concurrent behavior
[64].

Bennion and Habli [7] consider the use of Simulink Design
Verifier (SDV), amodel checker that forms part of amodelling
system already widely used in the safety-critical industry.
They investigate if SDV can provide a practical route to
effective formal verification. The study also considers the
extent to which model checking can satisfy the requirements
of the DO-178C guidance on formal methods.
Post et. al [48] investigate if real-time specification pat-

terns (RTSP) (proposed by Konrad and Cheng [29]) suffices
to formally express behavioral requirements taken from auto-
motive projects at BOSCH. RTSP is represented in a restricted
English grammar that can be automatically translated to log-
ics, but looks like natural language. Filipovikj et. al [20] also
focus on the use of the RTSP in the automotive domain. This

set of patterns was chosen because it provides a quantita-
tive notion of time, which is needed for the formalization of
real-time requirements in the automotive domain.

Arun et. al [2] propose using the Python programming lan-
guage as a formal specification tool. The authors note that the
number of successes of using FMs in industry remains very
low because it is difficult to learn new and complex mathe-
matical notations, there is a lack of experts on FMs, and it
is difficult to review large specifications that are written in
mathematical notations. One of the benefits of Python is that
it is an interpreted programming language with expressive
syntax that some have compared to executable pseudocode
[43]. Thus, the authors investigate if using Python as a for-
mal specification language can be effective and solve the
problems that are associated with traditional FMs.
Moy et. al [38] present a multi-case study of two compa-

nies in the avionics domain. One case focuses on the use of
unit proof for verifying functional properties. This is a pro-
gram proof method based on CAVEAT, a C program prover
developed by the commissariat à l’énergie atomique, and is
applied in the verification process of a safety-critical avionics
program to achieve DO-178 objectives [54]. These objectives
relate to verifying that the executable code meets the func-
tional LLRs.

Ferrari et. al [19] report on the use of a formal development
approach that integrates SysML and Simulink/Stateflow. SysML
(Systems Modeling Language) is a general-purpose architec-
ture modeling language for system development [56]. State-
flow provides users with a graphical language that includes
state transition diagrams, flow charts, state transition tables,
and truth tables. Stateflow can be used to describe how MAT-
LAB algorithms and Simulink models react to input signals,
events, and time-based conditions [35].
Sune Wolff [62] focuses on the use of Vienna Develop-

ment Method (VDM) for specifying and developing software
in the avionics domain. VDM consists of a group of mathe-
matically well-founded languages and tools for expressing
and analyzing system models during early design stages,
before expensive implementation commitments are made.
The construction and analysis of the model help to identify
areas of incompleteness or ambiguity in informal system
specifications, and provide some level of confidence that a
valid implementation will have key properties, especially
those of safety or security [40].
Bozzano et. al [11] use AADL models and the COMPASS

toolset for validating spacecraft designs. The COMPASS
toolset uses a coherent set of specification and analysis tech-
niques to evaluate the system-level correctness, safety, de-
pendability and performability of on-board computer-based
aerospace systems [16]. COMPASS uses the SLIM language,
a dialect based on AADL, to generate its input models. This
makes it possible to describe both the hardware and software
components of the system, and their connections. Separate



Investigating the Usefulness of Formal Methods in Industry CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON

error models can be defined to describe faults, which can
automatically be injected into the model [16].

6.2 Research Question 2
“How useful are FMs and tools when applied to indus-
trial software systems?"
Groote et. al [21] report on their experience of applying

the ASD method to the development of the Front-end client
(FEClient) software unit of highly sophisticated X-ray ma-
chines at Philips Healthcare. The main responsibility of the
FEClient is to guard the flow of information between two
concurrent subsystemes of the X-ray machines. The control
part of the FEClient was developed in a pipeline of consecu-
tive increments, where each increment was described using
an ASD specification and mathematically verified via model
checking. Throughout this process, only eleven coding er-
rors were detected during the construction of 28 thousand
lines of code. Team members credit the ultimate quality of
the FEClient software to the rigor and formal technologies
supplied by the ASDmethod, including specification reviews,
formal behavioral verification, and model checking.

Osaiweran et. al [45] also use the ASD approach at Philips
Healthcare. In this case, the authors combined the use of the
commercial tool ASD:Suite and test-driven development to
develop the power control service of an interventional X-ray
system. The end quality of the power control service was
very high, exhibiting only 0.17 defects per KLOC. This level
of quality compares favorably with the industry standard
defect rate of 1-25 defects per KLOC [36]. Further testing
was conducted by independent testing teams and no errors
were found.

Amazon engineers used TLA+ during the development of
10 large complex real-world systems and report that TLA+
added significant value in all cases [42]. Engineers credit the
use of TLA+ to finding subtle bugs that would not have been
found by other means. Moreover, TLA+ provided engineers
with enough understanding and confidence to make aggres-
sive performance optimizations without sacrificing program
correctness. Compared to traditional proof writing, writing
formal TLA+ specification was more reliable and less time
consuming. This suggests an improvement in time to market
and a good return on investment.
Rodrigues et. al [50] conducted a survey to collect the

opinions of practitioners on using FMs for requirements
specification in Agile projects. The most cited advantages
of using formal specification are standardization of require-
ments writing, eliminating ambiguity, and producing consis-
tent and precise specifications. Survey results also indicate
that the main challenges in applying FMs to requirements
specification are related to the complexity of understand-
ing formal specification (e.g., formal specification demands
more time, is more complex than informal specification, and
requires training). The authors also conducted a multi-case
study to determine how formal specification (particularly the

Z notation) can contribute to Agile projects in the business
domain. They report that formal specification helps remove
specification errors and works better for complex problems.
However, the main limitations are lack of knowledge about
formal specification and the amount of time needed for for-
mal specification.
Bennion and Habli [7] report that model checking with

SDV can find errors earlier in the development cycle than
traditional verification. This has the potential to save time
and money due to reduced scrap and rework. However, no
evidence was found that model checking finds more errors
than traditional verification. The authors also find that the
benefits of SDV can be realized in an industrial setting with-
out specialist skills.
Post et. al [48] conclude that SPS suffices to express au-

tomotive behavioral requirements at BOSCH. They found
that a majority of traditional requirements could be reformu-
lated in the SPS. Only a few patterns were needed to express
most automotive behavioral requirements at BOSCH, but
more studies with requirements of automotive suppliers are
needed to refute or strengthen this belief for the entire auto-
motive domain.

Filipovikj et. al [20] investigate if SPS can be used to trans-
form system requirements for Scania Electrical and Elec-
tronic (E/E) systems inside heavy road vehicles from their
traditional written form into semi-formal notation. One of
the reported benefits of using SPS is an apparent reduction
of ambiguity in the system requirements. Scania engineers
also report that using SPS provides a useful support struc-
ture for discussing the meaning of certain requirements, and
this is expected to have a positive impact on communica-
tion between stakeholders. Moreover, SPS is applicable to
industrial settings because it improves the testability of the
requirements and the patterning process was conducted in a
reasonable time frame. The authors conclude that the con-
cept of patterns is likely to be generally applicable to the
automotive domain.
Arun et. al [2] use Python for writing formal specifica-

tions of software in nuclear industry. They identify that
using Python increases usability, reviewability, and scalabil-
ity of formal specifications. High level languages like Python
do not require special tools or a strong mathematical back-
ground to write specifications. The simple syntax of Python
can also significantly reduce the effort needed to maintain
the specifications. Moreover, the syntax of Python resem-
bles natural language, which simplifies the review process
for interested stakeholders (i.e., managers, customers, and
certifiers).

Moy et. al [38] focus on software systems for commercial
aircrafts at two companies: Dassault-Aviation and Airbus.
Both companies successfully applied formal verification early
on in the software development process. The evidence sug-
gests that formal verification is practical in a DO-178 context
and can be a cost-effective alternative to testing. For example,



CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON Alex Pawelczyk

the ambiguities of natural language can be avoided when
formulating requirements with a formal notation. Formal
analysis techniques can then be used to check for consis-
tency, and this is especially useful because in practice, most
errors stem from the requirements instead of the code.

Ferrari et. al [19] reports a 10 year experience of how Gen-
eral Electric Transportation Systems (GETS), a medium-sized
branch of a global railway signaling manufacturer, adopted
general purpose, model-based tools aided by formal methods
to develop its products. Initially, developers at GETS used
the models designed through Simulink/Stateflow solely for
requirements elicitation. However, the company also wanted
to explore the use of these models for code generation. Thus,
GETS adopted model-based testing and abstract interpre-
tation, as well as language restrictions to reduce the tool
suite’s semi-formal semantics to a formal semantics. This
model-based approach sped up development and allowed
the company to handle more complex systems.
One study [62] developed an executable model of a self-

defense system for a fighter aircraft using VDM. A large
test suite of scenario-based tests was used to exercise the
model. An analysis of the resulting output lead to a lot of in-
sight being gained regarding the general functionality of the
system, along with the new interpretation of the messages
passed between ECAP and the AS subsystem. This proved
to be a valuable asset in reaching an agreement with the
customer, where the customer was particularly impressed
by the extensive tests which had been carried out on the
model. The log files generated by running tests served as
an important tool for facilitating effective communication
between the customer and the systems engineers in charge
of the project.
Bozzano et. al [11] use the COMPASS toolset for validat-

ing spacecraft designs. The authors conducted three pilot
projects over a span of five years that focused on system-
level and subsystem-level designs of past and ongoing space
missions. These projects focused on the definition and anal-
ysis of extremely large spacecraft systems and resulted in
an advancement of validating spacecraft designs for correct-
ness, safety, dependability, and performance. Moreover, the
software readiness level increased from level 1 to early level
4.

7 Discussion
The results of this SLR suggest that a wide range of FMs can
be useful for developing industrial software systems. FMs
appear to be particularly useful for developing safety-critical
systems, where defects in the software can potentially result
in the loss of human lives. Every primary study focused on
the application of FMs and tools in safety-critical domains,
such as aviation (e.g., military jets and spacecrafts), auto-
motive, railway, healthcare, and nuclear. Moreover, many
studies report that the application of FMs had a positive effect

on the end-product, such as increased software quality. Other
positive effects include an increase in productivity during
the software development process, reductions in ambiguity,
and an increase in knowledge transfer.
Moreover, a number of the studies from the SLR credit

the successful application of FMs to the technological ad-
vancements in FM tools. These tools reduce the time needed
to learn and understand the complex mathematics behind
FMs. Early evidence suggests that even developers with no
prior FMs experience can successfully apply FM tools to real-
world projects. As tools become more user friendly, a rise in
the adoption of FMs in industry is expected. A 2020 report
by Margaria and Kinry identifies that the current usage of
FMs in industry is rising due to technological advancements
in FM tools [34]. This has driven industry giants, such as
Apple, Amazon, Google, and NASA, to adopt FMs in daily
business practices.

Although the results of this SLR suggest that FMs can be
useful in industry, one of the reported drawbacks of FMs
stems from the learning time that is required to become com-
fortable with these methods and the tools that support them.
Many studies report that engineers require some time to
get acclimated to the FMs and tools that are deployed at the
beginning of the project cycle. However, as the project pro-
gresses, the engineers became more comfortable and produc-
tive. This is a common occurrence whenever a new method
or technology is adopted at a company. For example, one
of the drawbacks of using pair programming in industry
is that it takes time, usually around a week, before a pair
becomes productive (also known as pair jelling) [60]. The
results of this SLR suggest that a similar phenomenon applies
to FMs, where productivity gradually increases as a person
learns how to apply a particular method or tool to his or her
respective work domain.

One area of concern is that no studies report negative ex-
periences when applying FMs to the development process of
industrial software systems. There are at least two possible
explanations for this: either FMs truly are a superior tech-
nique for producing quality software with minimal defects,
or researchers do not want to publish negative experiences
when using FMs. If FMs are a truly superior technique, then
the adoption of these techniques should be a common prac-
tice in industry. Some primary studies do mention that FMs
and tools are being rapidly adopted as more user-friendly
tools are being invented and deployed in industry. This sug-
gests a recent rise in the industrial use of FMs, but finding
published studies written within the 2010-20 timeframe was
a difficult task. An overwhelming majority of the studies
from this timeframe either propose new FMs or apply FMs
to small-scale software systems in experimental settings.
This indicates a need for more research that investigates the
usefulness of FMs when applied in industry.



Investigating the Usefulness of Formal Methods in Industry CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON

8 Limitations
Several factors need to be considered when generalizing
the results of this SLR. First, only one person (the author)
was responsible for carrying out the entire review process.
The author defined the review protocol and carried out the
major tasks involved in each phase of the SLR, which may
have unwittingly biased the results. For example, having
only one person to select primary studies based on a set
of inclusion and exclusion criteria could have resulted in
the inclusion of studies that should have been omitted (or
vice versa). However, an effort was made to avoid bias by
closely following the recommendations suggested in the SLR
guidelines [3, 28].
Another limiting factor stems from the process of identi-

fying relevant literature, where primary studies were only
obtained from electronic sources. Without searching non-
electronic conference proceedings and journals, there is po-
tential that relevant studies were omitted from this SLR.
Moreover, only papers that are written in the languages of
English or Polish were considered during the primary study
selection process. This is due to the fact that the author can
only read in these two languages. However, papers written
in other languages could have been translated into English
using a tool like Google Translate, and thus resulted in the
discovery of relevant studies and key insights about FMs.
Another exclusion criteria poses a limitation because it

excludes studies that use FMs in experimental settings. Exper-
imental studies are important because they are replicable and
provide researchers with an opportunity to gain quantitative
results that are more statistically significant than industrial
studies, which tend to only be one data point. Experiments
also enable the use of a control group, whereas asking two
teams to perform identical tasks in an industrial setting is
impractical and expensive. Despite their valuable aspects,
experimental studies were excluded because this SLR focuses
on the use of FMs for the development of industrial software
systems. Compared to an experiment where subjects are
asked to develop small-scale systems in a short period of
time, an industrial domain features larger and more complex
software systems that can take months, or even years, to
develop. Since it is impractical, if not impossible, to develop
an application of industrial size and complexity in an exper-
iment, it was necessary to exclude these studies from the
SLR.

9 Future Work
One of the benefits of FMs is that they help produce high
quality software with minimal defects. A similar benefit is
reported for the use of pair programming (PP) when devel-
oping commercial software applications [6, 17, 23, 55, 57].
This poses an opportunity to investigate if combining the
use of PP and FMs can improve software quality more than
using FMs alone. In addition, both FMs and PP require some

acclimation time before becoming effective. Perhaps the ad-
dition of an extra developer that comes from PP may result
in a faster acclimation time to FMs than a single person who
is using FMs. Combining PP and FMs may also help facil-
itate knowledge transfer throughout a team. However, PP
carries the inherent burden of an increase in cost with the
addition of an extra developer. Thus, it is important to con-
duct research that investigates the costs and benefits (both
economic and social) of combining FMs and PP in industrial
domains. This research will result in credible evidence that
companies can use when thinking about adopting the novel
technique.
Another avenue for future work will focus on taking the

results of this SLR and comparing them to a wide range of
studies that use the same FMs and tools in experimental
settings. It will be interesting to see if similar benefits and
drawbacks are observed in experimental environments. If
there are differences, it will be worthwhile to investigate how
two or more studies that use the same method or tool come
up with different results. Perhaps certain factors, such as the
complexity of a given programming task, may influence the
success or failure of applying a particular method or tool.
Identifying these factors is an important area of research
because knowing them in advance will lead to the more
effective deployment of FMs and tools.

10 Conclusion
The results of this SLR suggest that a wide variety of FMs and
tools are being successfully applied in industry. As commer-
cial pressure to produce higher quality software continues
to increase, FMs have an opportunity to play a crucial role
in the development of safety-critical software systems. Tools
that support FMs are becoming easier to use, while yielding
the same or better quality benefits compared to applying
traditional FMs. In a world where market pressure also plays
a major role in getting a system developed on time, it is
important that practitioners are sufficiently trained in the
FMs or tools that they are applying. Moreover, the FMs re-
search community needs to continue to invest effort into
investigating the usefulness of FMs in industry. The more
evidence that exists about the successful application of FMs
and tools, the more likely that practitioners in industry will
adopt them.

Acknowledgments
I would like to express my very great appreciation to Dr.
Mei Nagappan for his valuable and constructive suggestions
during the planning and development of this research work.
I would also like to thank David Radke (PhD candidate, Uni-
versity of Waterloo) for his help during the revision process
of this paper.



CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON Alex Pawelczyk

References
[1] 2012. Failures-divergence Refinement Fdr2 User Manual.
[2] B. P. Arun, N. Murali, P. Swaminathan, and K. C. Senthil. 2010. Making

formal software specification easy. In 2010 2nd International Conference
on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-
of-Failure Methods (ICRESH). 511–516.

[3] Kitchenham BA and Stuart Charters. 2007. Guidelines for performing
Systematic Literature Reviews in Software Engineering. 2 (01 2007).

[4] J. Backes, P. Bolignano, B. Cook, A. Gacek, K. S. Luckow, N. Rungta, M.
Schaef, C. Schlesinger, R. Tanash, C. Varming, and M. Whalen. 2019.
One-Click Formal Methods. IEEE Software 36, 6 (2019), 61–65.

[5] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The
Goal Question Metric Approach.

[6] Andrew Begel and Nachiappan Nagappan. 2008. Pair Programming:
What’s in it for Me? 120–128. https://doi.org/10.1145/1414004.1414026

[7] Matthew Bennion and Ibrahim Habli. 2014. A Candid Industrial
Evaluation of Formal Software Verification Using Model Checking.
In Companion Proceedings of the 36th International Conference on
Software Engineering (Hyderabad, India) (ICSE Companion 2014). As-
sociation for Computing Machinery, New York, NY, USA, 175–184.
https://doi.org/10.1145/2591062.2591184

[8] Per Bjesse. 2005. What is Formal Verification? SIGDA Newsl. 35, 24
(Dec. 2005), 1–es. https://doi.org/10.1145/1113792.1113794

[9] J. P. Bowen and M. G. Hinchey. 1995. Seven more myths of formal
methods. IEEE Software 12, 4 (1995), 34–41.

[10] Jonathan P. Bowen andMichael G. Hinchey. 1995. Ten Commandments
of Formal Methods. Computer 28, 4 (April 1995), 56–63. https://doi.
org/10.1109/2.375178

[11] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Panagiotis
Katsaros, Konstantinos Mokos, Viet Yen Nguyen, Thomas Noll, Bart
Postma, and Marco Roveri. 2014. Spacecraft early design validation
using formal methods. Reliability Engineering System Safety 132 (2014),
20 – 35. https://doi.org/10.1016/j.ress.2014.07.003

[12] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. 2007. Lessons from Applying the Systematic
Literature Review Process within the Software Engineering Domain.
J. Syst. Softw. 80, 4 (April 2007), 571–583. https://doi.org/10.1016/j.jss.
2006.07.009

[13] Ricky Butler. 2016. What is Formal Methods? NASA. https://shemesh.
larc.nasa.gov/fm/fm-what.html.

[14] JasonM. Carter and Jesse H. Poore. 2007. Sequence-Based Specification
of Feedback Control Systems in Simulink®. In Proceedings of the 2007
Conference of the Center for Advanced Studies on Collaborative Research
(Richmond Hill, Ontario, Canada) (CASCON ’07). IBM Corp., USA,
332–345. https://doi.org/10.1145/1321211.1321257

[15] Edmund M. Clarke and Jeannette M. Wing. 1996. Formal Methods:
State of the Art and Future Directions. ACM Comput. Surv. 28, 4 (Dec.
1996), 626–643. https://doi.org/10.1145/242223.242257

[16] COMPASS 2020. COMPASS: Correctness, Modeling and Performance of
Aerospace Systems. COMPASS. http://www.compass-toolset.org/.

[17] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and J. Vlasenko.
2013. Pair Programming and Software Defects–A Large, Industrial
Case Study. IEEE Transactions on Software Engineering 39, 7 (2013),
930–953.

[18] Tore Dybå and Torgeir Dingsøyr. 2008. Empirical Studies of Agile
Software Development: A Systematic Review. Inf. Softw. Technol. 50,
9–10 (Aug. 2008), 833–859. https://doi.org/10.1016/j.infsof.2008.01.006

[19] A. Ferrari, A. Fantechi, S. Gnesi, and G. Magnani. 2013. Model-Based
Development and Formal Methods in the Railway Industry. IEEE
Software 30, 3 (2013), 28–34.

[20] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas. 2014. Reassess-
ing the pattern-based approach for formalizing requirements in the
automotive domain. In 2014 IEEE 22nd International Requirements En-
gineering Conference (RE). 444–450.

[21] Jan Friso Groote, Ammar Osaiweran, and Jacco Wesselius. 2012. Ex-
perience Report on Developing the Front-End Client Unit under the
Control of Formal Methods. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (Trento, Italy) (SAC ’12). Associ-
ation for Computing Machinery, New York, NY, USA, 1183–1190.
https://doi.org/10.1145/2245276.2231962

[22] A. Hall. 1990. Seven myths of formal methods. IEEE Software 7, 5
(1990), 11–19.

[23] Gerard Hartnett and Brian Fitzgerald. 2005. A Study of the Use of
Agile Methods within Intel. International Federation for Information
Processing Digital Library; Business Agility and Information Technology
Diffusion; 180. https://doi.org/10.1007/0-387-25590-7_12

[24] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman,
Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons,
Sergiy Vilkomir, Martin R.Woodward, and Hussein Zedan. 2009. Using
Formal Specifications to Support Testing. ACM Comput. Surv. 41, 2, Ar-
ticle 9 (Feb. 2009), 76 pages. https://doi.org/10.1145/1459352.1459354

[25] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun.
ACM 21, 8 (Aug. 1978), 666–677. https://doi.org/10.1145/359576.359585

[26] Christoph Kern and Mark R. Greenstreet. 1999. Formal Verification in
Hardware Design: A Survey. ACM Trans. Des. Autom. Electron. Syst. 4,
2 (April 1999), 123–193. https://doi.org/10.1145/307988.307989

[27] Khalid S. Khan, Regina Kunz, Jos Kleijnen, and Gerd Antes. 2011.
Systematic reviews to support evidence-based medicine.

[28] Barbara Kitchenham. 2004. Procedures for Performing Systematic
Reviews. Keele, UK, Keele Univ. 33 (08 2004).

[29] Sascha Konrad and Betty H. C. Cheng. 2005. Real-Time Specification
Patterns. In Proceedings of the 27th International Conference on Software
Engineering (St. Louis, MO, USA) (ICSE ’05). Association for Computing
Machinery, New York, NY, USA, 372–381. https://doi.org/10.1145/
1062455.1062526

[30] Subodh Kumar. 2013. Formal methods for software specification and
analysis:An Overview.

[31] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley Longman
Publishing Co., Inc., USA.

[32] Axel van Lamsweerde. 2000. Formal Specification: A Roadmap. In
Proceedings of the Conference on The Future of Software Engineering
(Limerick, Ireland) (ICSE ’00). Association for Computing Machinery,
New York, NY, USA, 147–159. https://doi.org/10.1145/336512.336546

[33] D.Mandrioli. 2015. On theHeroism of Really Pursuing FormalMethods.
In 2015 IEEE/ACM 3rd FME Workshop on Formal Methods in Software
Engineering. 1–5.

[34] T. Margaria and J. Kiniry. 2020. Welcome to Formal Methods in Indus-
try. IT Professional 22, 1 (2020), 9–12.

[35] MATLAB & Simulink 2020. Stateflow: Model and simulate decision
logic using state machines and flow charts. MATLAB & Simulink.
https://www.mathworks.com/products/stateflow.html.

[36] Steve McConnell. 2004. Code complete, second edition. Microsoft Press.
[37] J. B. Michael, G. W. Dinolt, and D. Drusinsky. 2020. Open Questions

in Formal Methods. Computer 53, 5 (2020), 81–84.
[38] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate. 2013. Testing

or Formal Verification: DO-178C Alternatives and Industrial Experi-
ence. IEEE Software 30, 3 (2013), 50–57.

[39] Y. Murray and D. A. Anisi. 2019. Survey of Formal VerificationMethods
for Smart Contracts on Blockchain. In 2019 10th IFIP International
Conference on New Technologies, Mobility and Security (NTMS). 1–6.

[40] Andreas Müller. 2009. VDM — The Vienna Development Method. (04
2009).

[41] S. P. Nanda and E. S. Grant. 2019. A Survey of Formal Specification
Application to Safety Critical Systems. In 2019 IEEE 2nd International
Conference on Information and Computer Technologies (ICICT). 296–
302.

https://doi.org/10.1145/1414004.1414026
https://doi.org/10.1145/2591062.2591184
https://doi.org/10.1145/1113792.1113794
https://doi.org/10.1109/2.375178
https://doi.org/10.1109/2.375178
https://doi.org/10.1016/j.ress.2014.07.003
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://doi.org/10.1145/1321211.1321257
https://doi.org/10.1145/242223.242257
http://www.compass-toolset.org/
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1145/2245276.2231962
https://doi.org/10.1007/0-387-25590-7_12
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1145/336512.336546
https://www.mathworks.com/products/stateflow.html


Investigating the Usefulness of Formal Methods in Industry CS646: Software Design and Architecture, Aug. 2, 2020, Waterloo, ON

[42] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon Web Services
Uses Formal Methods. Commun. ACM 58, 4 (March 2015), 66–73.
https://doi.org/10.1145/2699417

[43] T. E. Oliphant. 2007. Python for Scientific Computing. Computing in
Science Engineering 9, 3 (2007), 10–20.

[44] A.A.H. Osaiweran, M. Boosten, and M.R. Mousavi. 2010. Analytical
software design : introduction and industrial experience report. Technis-
che Universiteit Eindhoven.

[45] AmmarOsaiweran,Mathijs Schuts, Jozef Hooman, and JaccoWesselius.
2013. Incorporating Formal Techniques into Industrial Practice: an
Experience Report. Electronic Notes in Theoretical Computer Science 295
(2013), 49 – 63. https://doi.org/10.1016/j.entcs.2013.04.005 Proceedings
the 9th International Workshop on Formal Engineering approaches to
Software Components and Architectures (FESCA).

[46] D. L. Parnas. 2010. Really Rethinking ’Formal Methods’. Computer 43,
1 (2010), 28–34.

[47] S. L. Pfleeger and L. Hatton. 1997. Investigating the influence of formal
methods. Computer 30, 2 (1997), 33–43.

[48] Amalinda Post, Igor Menzel, Jochen Hoenicke, and Andreas Podelski.
2012. Automotive Behavioral Requirements Expressed in a Specifi-
cation Pattern System: A Case Study at BOSCH. Requir. Eng. 17, 1
(March 2012), 19–33. https://doi.org/10.1007/s00766-011-0145-9

[49] C. Rodrigues. 2009. A case study for Formal Verification of a timing
co-processor. In 2009 10th Latin American Test Workshop. 1–6.

[50] Peterson Rodrigues, Miguel Ecar, Stefane V. Menezes, João Pablo S.
da Silva, Gilleanes T. A. Guedes, and Elder M. Rodrigues. 2018. Em-
pirical Evaluation of Formal Method for Requirements Specification
in Agile Approaches. In Proceedings of the XIV Brazilian Symposium
on Information Systems (Caxias do Sul, Brazil) (SBSI’18). Association
for Computing Machinery, New York, NY, USA, Article 53, 8 pages.
https://doi.org/10.1145/3229345.3229401

[51] K. Schaffer and J. Voas. 2016. What Happened to Formal Methods for
Security? Computer 49, 8 (2016), 70–79.

[52] R. Sinha, S. Patil, L. Gomes, and V. Vyatkin. 2019. A Survey of Static For-
mal Methods for Building Dependable Industrial Automation Systems.
IEEE Transactions on Industrial Informatics 15, 7 (2019), 3772–3783.

[53] A. E. K. Sobel andM. R. Clarkson. 2002. Formal methods application: an
empirical tale of software development. IEEE Transactions on Software
Engineering 28, 3 (2002), 308–320.

[54] Jean Souyris and Denis Favre-Félix. 2004. Proof of Properties in Avion-
ics. In Building the Information Society, Renè Jacquart (Ed.). Springer
US, Boston, MA, 527–535.

[55] Wenying Sun, GeorgeMarakas, andMiguel Aguirre-Urreta. 2015. Effec-
tiveness Of Pair Programming: Perceptions Of Software Professionals.
IEEE Software 33 (01 2015), 1–1. https://doi.org/10.1109/MS.2015.106

[56] SysML.org 2020. SysML Open Source Project - What is SysML? Who
created it? SysML.org. https://sysml.org/.

[57] Jari Vanhanen and Casper Lassenius. 2007. Perceived Effects of Pair
Programming in an Industrial Context. Conference Proceedings of the
EUROMICRO, 211 – 218. https://doi.org/10.1109/EUROMICRO.2007.47

[58] A. Wassyng. 2013. Though this be madness, yet there is method in it?
(Keynote). In 2013 1st FME Workshop on Formal Methods in Software
Engineering (FormaliSE). 1–7.

[59] Danny Weyns, M. Usman Iftikhar, Didac Gil de la Iglesia, and Tanvir
Ahmad. 2012. A Survey of Formal Methods in Self-Adaptive Systems.
In Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering (Montreal, Quebec, Canada) (C3S2E
’12). Association for Computing Machinery, New York, NY, USA, 67–79.
https://doi.org/10.1145/2347583.2347592

[60] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries. 2000.
Strengthening the case for pair programming. IEEE Software 17, 4
(2000), 19–25.

[61] J. M. Wing. 1990. A specifier’s introduction to formal methods. Com-
puter 23, 9 (1990), 8–22.

[62] Sune Wolff. 2015. Using Executable VDM++ Models in an Industrial
Application - Self-defense System for Fighter Aircraft.

[63] Yaron Wolfsthal and Rebecca M. Gott. 2005. Formal Verification: Is It
Real Enough?. In Proceedings of the 42nd Annual Design Automation
Conference (Anaheim, California, USA) (DAC ’05). Association for
Computing Machinery, New York, NY, USA, 670–671. https://doi.org/
10.1145/1065579.1065755

[64] JimWoodcock and Jim Davies. 1996. Using Z: Specification, Refinement,
and Proof. Prentice-Hall, Inc., USA.

[65] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzger-
ald. 2009. Formal Methods: Practice and Experience. ACM Comput.
Surv. 41, 4, Article 19 (Oct. 2009), 36 pages. https://doi.org/10.1145/
1592434.1592436

https://doi.org/10.1145/2699417
https://doi.org/10.1016/j.entcs.2013.04.005
https://doi.org/10.1007/s00766-011-0145-9
https://doi.org/10.1145/3229345.3229401
https://doi.org/10.1109/MS.2015.106
https://sysml.org/
https://doi.org/10.1109/EUROMICRO.2007.47
https://doi.org/10.1145/2347583.2347592
https://doi.org/10.1145/1065579.1065755
https://doi.org/10.1145/1065579.1065755
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436

	Abstract
	1 Introduction
	2 Related Work
	3 Two Key Branches of FMs
	3.1 Formal Specification
	3.2 Formal Verification

	4 The Review Protocol
	5 Conducting the Review
	5.1 Research Questions
	5.2 Identifying Relevant Literature
	5.3 Inclusion and Exclusion Criteria
	5.4 Quality Assessment
	5.5 Data Extraction

	6 Results
	6.1 Research Question 1
	6.2 Research Question 2

	7 Discussion
	8 Limitations
	9 Future Work
	10 Conclusion
	Acknowledgments
	References

