

D5 - Architecture & Design Document

Group 3

Alexander Lipianu (aglipian), Alex Pawelczyk (apawelcz), Kent Zhu
(k36zhu), Sanketh Menda (sgmenda), William Chen (w279chen),

Zhengyuan Gao (z73gao)

Section 1: Architecture of Git Trailblazer
The architectural foundation of Git Trailblazer is composed of the client-server and pipe and
filter architectures. These architectures play a vital role in ensuring that Git Trailblazer meets the
functional requirements and non-functional attributes described in the project proposal. The rest
of this section details how the functional requirements and non-functional attributes are
supported by the client-server and pipe and filter architectures. Moreover, we justify why we
chose to use the client server and pipe and filter architectures for the development of Git
Trailblazer.

Section 1.1: Client-Server Architecture
Users of Git Trailblazer (i.e. the clients) frequently communicate with Firebase, GitHub, and
GitLab servers as they navigate throughout the app. Since the main purpose of the app is to
provide users with recommendations of interesting repositories and issues from the GitHub and
GitLab platforms, we needed to make use of the GitHub and GitLab APIs to access important
data. We also integrate Git Trailblazer with Firebase because Firebase offers many useful
features, such as secure authentication and scalable data storage. Figure 1 visualizes the
component and physical representation of the system.

Figure 1. A depiction of the components and physical representation of Git Trailblazer’s client-server
architecture.

The use of the client-server architecture plays a crucial role in the successful implementation of
Git Trailblazer’s functional requirements. When a user creates an account, Firebase
Authentication is used to store important account information, such as the user’s email address,
the sign in provider (i.e., GitHub or email), the account creation date, the date that a user was
last signed in, and a unique user id. Logging in with GitHub facilitates communication with both
GitHub and Firebase servers, while logging in with email only contacts Firebase servers.
Firebase also handles other important account-management functionalities, such as logging out
and account deletion. When users sign in for the first time, they are directed to a questionnaire
populated with tags that might be of interest to the user (inferred from previous GitHub activity)
and have the option to select tags that they are interested in. Firebase stores all selected tags in
the Cloud Firestore database, and these tags are then used to instantiate a query for relevant
repositories and issues to the user. The search bar can also be used to find repositories and
issues that are relevant to the inputted query. Notifications and comments are two other
functional requirements that use Cloud Firestore for scalable data storage. We use the GitHub
and GitLab APIs to obtain the data that is displayed in the repository and issue cards, and
querying for this data (based on user-inputted tags from the questionnaire or search bar)
initiates contact with GitHub and GitLab servers.

The client-server architecture also supports various non-functional properties mentioned in the
proposal:

● Privacy/Security: Since users are authenticated via Firebase, Git Trailblazer does not
actively handle or store any of the user’s personal data (like passwords). Instead, this
sensitive information is handled by Google who is expected to keep up with good
security practices (like salting and hashing passwords). Even though the GitHub API is
used, the app does not log user’s activities such as clicking on a repository within the
App, nor does it retrieve and store any of the user’s activity (that is, none of the results of
the API calls leave the phone).

● Evolvability: It is easy to make changes by adding additional servers for new services
and upgrading the server. For instance, new authentications can be easily added for
platforms other than GitHub such as GitLab and Facebook by updating the connector.

● Usability: Integration with Firebase allows us to provide third-party logins which makes it
easier for users to sign up. Further integration with GitHub allows us to infer user’s
preferences from their GitHub activity and use them to tailor the experience.

● Readability: By using external, mature, well-documented APIs like Firebase, GitHub,
and GitLab, we make it easier to onboard new developers as they can read the existing
documentation and consult existing questions on platforms like StackOverflow when
stuck.

We chose to use the client-server architecture because it drives the fulfillment of many key
functional requirements and non-functional properties of Git Trailblazer. The main purpose of
the app is to present users with interesting repositories and issues from GitHub/GitLab. Hence,
we needed to use the GitHub/GitLab APIs to communicate with their respective servers and
fetch the required data. We also needed a way to store and manage user accounts; thus, we

leveraged the important backend services, user-friendly SDKs, and multiple authentication
methods (e.g., email and GitHub) of Firebase Authentication. In addition, Firebase allows
developers to create custom authentication methods, enabling Git Trailblazer to scale to more
authentication methods in the future (e.g., GitLab or Bitbucket). Finally, we needed a database
to store other important information, such as notifications and tags from the questionnaire. We
chose to use Cloud Firestore because it provides a relatively easy way to store, sync, and query
data for mobile apps in a scalable manner. Table 1 summarizes where the client-server
architecture is implemented in the source code.

Table 1. Implementation details of client-server architecture.

Class Name Description

package: com.example.githubtrailblazer

InitialActivity - On-click listener for GitHub sign in: Signing in with GitHub
instantiates the connector with an API access token and queries the
GitHub API for user data. Cloud Firestore is used to store the user
data (i.e., GitHub ID, full name, username, and avatar URL).

RegisterActivity - On-click listener for account creation: Uses email/password
credentials to create an account and authenticate a user via Firebase
Authentication. Further account details are stored in Cloud Firestore
(e.g., user’s full name). All error checking is handled by Firebase
Authentication and Cloud Firestore.

LoginActivity - On-click listener for email/password sign in: Firebase Authentication
validates the inputted email/password combination and signs the
user into the app if successful. All error checking is handled by
Firebase Authentication and Cloud Firestore.

QuestionnaireActivity - Infer user preferences from GitHub: On initialization, user
preferences are inferred from the user's GitHub activity and then
used to create a personalized questionnaire.
- Saving tags to Cloud Firestore: Upon questionnaire submission, the
tags that a user selected are stored in Cloud Firestore.

package: com.example.githubtrailblazer.connector

Connector - Connector initialization: Instantiating the (lazy-loading) singleton
Connector creates two HTTP clients (GitHub and GitLab) that can
send HTTP requests and read their responses.

***Data - Creating relevant data: IssueFeedData and UserDetailsData is
generated by querying the GitHub API via the connector, while
RepoFeedData is generated by querying both GitHub and GitLab
APIs via the connector.

Section 1.2: Pipe and Filter Architecture
Since our application supports multi-platform functionality with GitHub, GitLab, and potentially
other platforms, we need a way that allows us to parse different formats of data into a consistent
format. The pipe and filter architecture provides us with the functionality we need to perform
successive transformations of data streams. We are able to implement independent, reusable
filter components and use them repeatedly throughout our application to process data streams
we receive from multiple servers. Figure 2 outlines the key classes and services that rely on the
pipe and filter architecture.

Figure 2: A depiction of the key classes and implementation details that represent Git Trailblazer’s pipe
and filter architecture.

We use the pipe and filter architecture to support various functional properties that are essential
to our application. The pipe and filter architecture enables us to sort, filter, and combine data
from multiple APIs, each of which entail different query structure and separate pagination.
Moreover, since the API response data format we receive varies by platform, we map the data
to a shared, consistent, platform-independent format using the pipe and filter architecture such
that the API responses can be easily digested by the application’s business logic. Users initiate
third-party data filtering on the server side by either performing specific searches, scrolling
through their explore feed, and/or choosing a preset repository filter option.

In the proposal document, we mention various functional properties of Git Trailblazer, including
“scroll through a feed of repositories”, “filter the feed of repositories by different metrics”, “see
starred repositories”, and “see forked repositories”. By using server-side filters, we are able to
grab a list of repositories by certain criteria, which allows us to support searching repositories by
a certain tag. Server-side filters also allow us to grab user-specific repositories such as starred
repositories or forked repositories at little cost. Client-side filters give us the ability to sort the
repository feed by different metrics, such as “newest” or “most stars”, providing users with more
flexibility and liberty in viewing the repositories they want.

The pipe and filter architecture also supports multiple non-functional properties mentioned in the
proposal:

● Evolvability: By using the pipe and filter architecture to map different formats of data
into one shared format, we currently are able to support two platforms. However, our
application has the potential to expand to more platforms in the future given that we
implement new filters to process the data.

● Usability: Instead of having two separate interfaces for viewing repositories from
different platforms, we are able to combine them into one feed since pipe and filter
processes the data into one shared format.

● Fault tolerance: Using the pipe and filter architecture to combine and filter multiple API
data streams into one general data raises the fault tolerance of our repo feed to allow for
possible API failures since it is highly unlikely that multiple APIs fail at the same time.
Users are still able to receive content from the remaining functional data streams.

● Readability: The pipe and filter architecture is relatively comprehensible to new
developers. Although filters are implemented differently, they share the same structure in
reformatting the data stream thus can be easily referenced when a new developer
implement new filters.

The pipe and filter architecture provides essential utility to our application since the services that
we provide are heavily dependent on external APIs. By using this architecture, we are able to
support multiple platforms with little extra cost, allowing for further evolvability in the future. In a
team-based environment, it is also comprehensible thus easily maintainable by different
developers. Our main repo feed can also be cohesive using one single data format processed
from different sources, and one combined feed allows for higher fault tolerance in the scenario
of API failures. In addition, the pipe and filter architecture satisfies our user features to search,

sort, and filter through different repositories, giving more depth to our application functionality.
Table 2 illustrates how the pipe and filter architecture is used in our code.

Table 2. Implementation details of pipe and filter architecture.

package: com.example.githubtrailblazer.connector

Class Name Description

RepoFeedData Fetches repository feed data from GitHub and GitLab APIs, then filters,
sorts, and combines the different repository data formats into a shared
data type.

Section 2: Design Patterns
The lazy loading singleton and model-view-controller (MVC) are two key design patterns used
for the development of Git Trailblazer. This section details these patterns, along with important
classes, abstractions, and data structures that are critical to our app’s success. Moreover, we
justify our design choices and explain how coupling is minimized. We also compare our design
with alternative approaches, identify areas for future development, and detail how our chosen
design can handle these new requirements.

Section 2.1: Singleton for GitHub and GitLab API Calls
We chose to use the lazy-loading singleton design pattern for one of the key components of our
project: the GitHub/GitLab Connector (see Figure 3). We preferred the lazy-loading version of
the singleton pattern because this class is memory intensive and choosing to initialize it when
first required reduces initial loading time and makes our app more efficient. The Connector is
physically located on the phone and facilitates communication between GitHub/GitLab API sites
backed by GitHub/GitLab servers. On the backend, a HashMap is leveraged by the Connector
for query abstraction, which allows us to add new queries easily; in particular, we have Data
classes that make the GraphQL query and do the necessary post processing before giving a
SuccessCallback which can be used by other components. Git Trailblazer does not incorporate
any algorithms itself, but the GitHub/GitLab APIs use algorithms to filter and sort queries.

Figure 3. An abridged version of the Connector class emphasising the lazy-loading Singleton pattern.

The main reason that we chose to use the lazy-loading singleton pattern is that we only need
one instance of the Connector at any time. To meet this requirement, the singleton Connector
(see Figure 4) prevents the app from instantiating new objects when they are not needed. In
addition, the app avoids costly instantiation overhead (e.g., two HTML clients for each
instantiation). Having only one instance of the Connector also reduces the complexity of the
development process because we do not need to manage multiple Connectors. Since all
alternative approaches allow multiple instances of the Connector to exist, we decided to use the
singleton approach.

Figure 4. Connector is one of the Singleton classes in Git Trailblazer. The app only keeps one instance of
the connector, IssueFeedData, UserDetailsData and RepoFeedDate all collect data from Connector.

Employing the lazy-loading singleton design pattern minimizes coupling because there is only
one instance of the connector. This results in a low memory footprint and allows us to, in the
future, implement API rate limiting. The singleton design pattern can also be useful for
implementing future functional requirements. For example, if we ever need to include issues and
repositories from other platforms (e.g., BitBucket or SourceHut), the connector can scale to
support their API providers. Specifically, the singleton Connector with query abstraction
abstracts which services are used to retrieve the data, while the ***Data classes abstract how
the data is retrieved and how the many data streams are combined and mapped to a
‘common/shared’ format. As our app continues to grow in popularity, we plan to enhance the
singleton Connector to support API rate limiting. More users means more API calls, and it is
important to control this to prevent heavy computational and financial costs. Moreover, using an
alternate design would be costly because it requires an expensive synchronization between the
concurrent instances. Table 3 outlines where the lazy-loading singleton pattern is implemented
in the source code, and a code snippet of an example Data class can be seen in Figure 5.

Table 3. Implementation details of lazy-loading singleton design pattern.

package: com.example.githubtrailblazer.connector

Class Description

Connector - Connector initialization: We use a private and static initializer to
implement the lazy-loading singleton pattern. Instantiating the
Connector creates two singleton HTTP clients (GitHub and
GitLab) that can send HTTP requests and read their responses.

***Data - Creating relevant data: IssueFeedData and UserDetailsData is
generated by querying the GitHub API via the connector, while
RepoFeedData is generated by querying both GitHub and GitLab
APIs via the connector.

Figure 5. An abridged version of the UserDetailsData class demonstrating how a ***Data class looks.

Section 2.2: MVC Design Pattern
We’ve decided to separate the code related to distinct, repetitive standalone entities that appear
in our application into components. The components then further separate their own user
interfaces, state management, and event handling into individual view, model, and controller
classes respectively (MVC).

This design allows components to perform separation of concerns as follows:

1) The view (user interface) is responsible only for rendering the latest component state
data provided by the model when a change in the model state occurs, as well as relaying
user interface events to the controller.

2) The controller is responsible only for mapping user interface events to their
corresponding model actions.

3) The model is responsible only for managing component-related state, invoking external
application-specific side effects when necessary, and broadcasting updated state to all
dependent component views.

The component view, model, and controller classes follow specific implementation details to
make way for some abstractions and enforce consistency across the codebase. The component
controller(s) must extend some interface invoked by views when events occur, such as
android.view.View.OnClickListener, enabling the functional abstraction of component view(s)
that are able to set component controller instances as event handlers for view events.

The component view(s) must extend some descendant of the android.view.View class so that
instances can be upcast to android.view.View, making way for the following functional
abstractions:

- The component view(s) can be styled by creating a separate res/layout/*.xml file in
which the view is included, styled with attributes, and supplied any necessary children.

- The component view(s) is instantiated by inflating layouts that include it.
- The component view(s) can find any children defined in the layout file from which it was

instantiated by invoking this.findViewById(...), which can be manipulated by the view
when component state changes and/or have their event listeners bound to the
component controller.

The application’s MVC components utilize several key design patterns which were taught in this
course to implement the functionality outlined above. The observer design pattern is used in
views to subscribe to a model instance, and in models to publish state updates to all subscribed
views. The delegation design pattern is used in views and controllers by having the controller
implement the necessary event handler interface, and having the view delegate the event
handling behaviour to the controller. Finally, the state design pattern is often implemented in the
models, with model functionality changing based on the user’s account type and the third party

service data that they’re interacting with (for example, a user cannot fork/star a GitHub
repository if they did not authenticate with GitHub and thus possess a GitHub API OAuth token).

Application components follow specific class and package naming conventions. Each
component is its own subpackage of the com.example.githubtrailblazer.components package
consisting of at least 3 classes. The component class naming conventions and currently
implemented MVC components are detailed below.

Table 4. Implementation details of MVC component.

package: com.example.githubtrailblazer.components.<somecomponentname>

Class Description

Model The component model which manages component state, invokes
application side effects, and broadcasts updated state to
subscribed instances of SomeComponentName.

Controller The component controller which invokes changes in an instance
of Model based on received events.

SomeComponentName A component view (user interface) which subscribes to an
instance of Model and sets Controller as the event handler.

Note: The component view is typically not named View to avoid
clashing with the android.view.View class which is used heavily in
the codebase. Also, a component may consist of multiple different
component views (which share the same model and/or controller).

Table 5. Summary of current MVC components that are supported by Git Trailblazer.
Component Package Description

repocard The component responsible for displaying a repository’s summary
in card form.

searchbar The component responsible for performing application search
functionality.

toggle The component responsible for selecting between different
dropdown options.

MVC components enforce low coupling in the application by decoupling the component design,
state management, and event handling from the class in which the component is inflated. MVC
also enforces a high degree of cohesion within the component itself, as the view, model, and
controller classes are highly specialized in the functionalities that they perform. As future
requirements arise, existing parts of the application can be refactored into MVC components for

easy reuse if necessary. The view, model, and/or controller classes are modified as necessary
when additional complexity is introduced at the component level. Due to the high degree of
decoupling, component complexity can easily be scaled without having to worry much about
breaking the rest of the application. An example of such a system evolution would be a new
requirement where the search bar must show autocomplete suggestions for current trending
searches - the bulk of the changes taking place in searchbar.Model.

There were two other design alternatives with regards to components that the team considered,
but ultimately chose not to pursue. The first was to combine the component user interface, state
management, and event handling into one all-encompassing class that extended a descendant
of the android.view.View class. The main issue with this approach was that it exhibited poor
separation of concerns, rendering the component incohesive and shifting the external
application-specific side effect coupling from what would have been the component model into
the component view + model + controller. The second option was to move the model and
controller logic into the class that inflates, manages, and uses the high-level component state
information. This component design ultimately resulted in implementation-dependent
components that were not scalable or easy to extend due to high coupling with the class in
which the component is created, managed, and displayed. This design would exhibit poor
cohesiveness and add significant overhead to classes in the application that create, manage,
and display the component, but are out of the component’s scope.

Our application utilizes a variation of MVC known as MVVM (model, view, viewmodel) for the
implementation of our application’s navigation. An example of MVVM is the RepoDetailsActivity,
which serves the purpose of displaying the full repository details. In the context of our
application, MVVM and MVC can easily be swapped for each other.

Figure 6. An MVVM pattern example of Repo Card. Users interact with the controller to modify the model
and the change will be reflected on the card.

Section 2.3: Sequence Diagram

Figure 7. Sequence diagram that captures both user scenarios from the project proposal. Key
functionalities that are displayed include: (i) GitHub authentication and sign in, (ii) the questionnaire
activity, (iii) searching for and browsing through repositories/issues, (iv) clicking on repositories/issues to
display further details, (v) starring and forking repositories, (vi) sharing repositories with Android
Sharesheet, (vii) filtering repositories based on total stars/forks, and (vii) logging out.

Contributions

To-Date Contributions
1. Alexander Lipianu contributed by:

a. implementing the Connector data queries, help design and create the Connector
(Singleton pattern and Client-Server architecture)

b. implementing the repository feed (MVVM pattern)
c. implementing the search bar, repository card, and toggle components (MVC

pattern)
d. creating mockups for repo feed, issue feed, application navigation, and issue

details
e. implementing application navigation and toolbar
f. helping create the notification feed UI

2. Alex Pawelczyk contributed by:
a. implementing UI and backend for GitHub and email/password account creation,

sign in, and authentication with Firebase (client-server)
b. helping set up Cloud Firestore for storing detailed data of user accounts

(client-server)
c. helping implement the menu-options UI of the repository card (i.e., displaying

drop-down list of menu options on a repo card) and implementing the backend of
of the Android Sharesheet feature (i.e., the backend of the ‘share’ menu-option)
(MVC design pattern)

d. implementing the UI of the project pivot using mock data (i.e., showing mock
contributors/contributions + historical data)

3. Kent Zhu contributed by:
a. Help designing the structure of the user data stored in the Firestore.
b. implemented the register process to link new github users to Firebase data store.
c. Help implemented the module that query user information from Github api

4. Sanketh Menda contributed by:
a. helping design and create the Connector (which follows the Singleton pattern and

has a Client-Server architecture); and
b. helping with the GitLab integration (this is also Client-Server).

5. William Chen contributed by:
a. Mockup design iterations
b. Implementing the front and backend of the repo details screen (Observer pattern)

6. Zhengyuan Gao contributed by:
a. Implementing the questionnaire page’s frontend and backend (interact with

Firebase) (shown in D3).
b. Implementing part of notification feed UI (bell button with count and recyclerview)
c. Implementing notification feed backend [MVVM pattern and Adapter pattern]

(synchronization with Realtime Database).

d. Helping design structure of user data in Firestore and Realtime Database.

To-Be-Done Contributions
1. Alexander Lipianu will contribute by:

a. implementing the issue cards (MVC)
b. implementing the issue feed (MVVM)
c. implementing the issue details (MVVM)

2. Alex Pawelczyk and William Chen will contribute by:
a. Implementing the backend of the project pivot (contributors and contributions for

a specific repo) (client-server)
b. Implementing UI and backend for displaying a user’s contribution graph (time

permitting) (client-server)
3. Kent Zhu will contribute by:

a. Implement both the backend and UI of comment feature for Repo cards.
4. Sanketh Menda will contribute by:

a. helping update the questionnaire to take into account the user’s past
contributions; and

b. helping design and implement the issue feed
5. Zhengyuan Gao will contribute by:

a. Implementing backend of upvote/downvote feature on repos. (including
notifications for repo owner)

b. Implement backend of starring/forking feature on repos.

