Investigating the Effectiveness of Pair Programming
in Industrial Domains: A Systematic Literature
Review

Alex Pawelczyk
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Abstract

This research presents a systematic literature review (SLR)
of empirical studies that focus on the effectiveness of pair
programming (PP) in industrial domains. The primary ob-
jective of the SLR is to present the current research and
evidence relative to the effectiveness of PP when applied in
industry. The SLR also recognizes how PP effectiveness is
measured, the degree of effectiveness that PP has in indus-
trial domains, and factors that impact the effectiveness of PP.
This study is based on a comprehensive review of a set of
33 research papers that have been extracted from five major
online databases. The SLR highlights six measurements of
PP effectiveness (e.g., software quality, knowledge transfer,
productivity, effort, job satisfaction, and project cost) and
five key factors that can influence PP effectiveness (e.g., ex-
pertise level, personality, task complexity, driver-navigator
interactions, and work environment). The results suggest a
general agreement that when applied appropriately, PP can
increase software quality and knowledge transfer. Moreover,
the evidence suggests that PP is most effective when used for
high-complexity tasks and pairs are composed of individuals
with complementary skills, personalities, and knowledge
areas. Recommendations for practitioners include viewing
PP as an investment into better software quality, using PP
strategically, and adopting a team-oriented culture.

Keywords: pair programming, systematic literature review

ACM Reference Format:

Alex Pawelczyk. 2020. Investigating the Effectiveness of Pair Pro-
gramming in Industrial Domains: A Systematic Literature Review.
In CS846: Advanced Topics in Software Engineering, Aug. 7, Waterloo,
ON. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
1122445.1122456

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON
© 2020 Association for Computing Machinery.
https://doi.org/10.1145/1122445.1122456

1 Introduction

Pair programming (PP) is one of the twelve core practices
of eXtreme Programming (XP) [3] that is commonly applied
or recommended for use in conjunction with many other
Agile software development methods, including Test Driven
Development, Scrum, Feature Driven Development, Crystal,
Lean Software Development, and Dynamic Systems Devel-
opment Method [1]. PP refers to two programmers working
together at one computer and actively collaborating on the
same design, algorithm, code, or test [66]. One of the pro-
grammers in the pair, called the driver, is responsible for
controlling the keyboard and implementing the code or de-
sign. The other programmer in the pair, called the navigator,
observes the work of the driver, looks for tactical or strategic
defects, and offers ideas for solving a problem. Examples of
tactical defects include syntax errors, typos, or calling the
wrong function. Strategic defects (i.e., logic errors) occur
when the driver is implementing code that will not accom-
plish the target objective. During a PP session, the driver and
the navigator actively communicate and periodically switch
their roles [66].

Over the years, PP has been an extensively researched
topic in the software engineering community. Many people
argue that PP can improve the software development process
from a variety of different perspectives, and a large number
of empirical studies have been conducted to determine if
these claims are true. Some of the benefits of using PP in the
software development process include:

e improving software quality [2, 6, 7, 10, 32, 33, 35, 42,
54, 55, 60, 62, 67]

e increasing worker productivity [25, 29, 30, 36, 67]

o shortening time to market [10, 17, 23, 39, 42, 43, 67]

e improving knowledge transfer and communication
among teammates [10, 29, 32, 62, 66]

e increasing job satisfaction [58]

e easing the integration of new developers to the project
and reducing training costs [20, 68]

However, not all studies report positive effects of PP. Ex-
perimental results from the Nawrocki and Wojciechowski
study [38] show no positive effects of PP with respect to
time taken to complete a task and no improved functional

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

correctness of the software compared with individual de-
velopment. Consequently, the results suggest doubled costs
without increased quality for the pairs compared with the
individuals. Stephens et. al [57] claim that social dynamics, a
lack of privacy, a lack of quiet thinking time, and ergonomic
issues can lead to problems with PP. Other problems with PP
arise from an increase in effort and mental exhaustiveness
of the practice [2, 10, 38, 62, 66].

One of the problems with PP empirical studies stems from
the difficulty of generalizing their results beyond their ex-
perimental environments and into professional software in-
dustry. For one, most of the experiments are conducted in
educational settings where students are used as experimental
subjects. The educational environment may not provide an
accurate representation of the professional software industry
where it is common for a team of developers to collaborate
on various large-scale projects [12]. Moreover, many experi-
ments are conducted within a small time-frame (e.g., a couple
hours or a day) where subjects are asked to implement small
programs or make small changes to existing programs. Since
commercial applications may take multiple years to develop,
generalizing the results from these experiments to the indus-
trial domain is not feasible.

An essential component of PP research is gaining an un-
derstanding of its effects when applied to industrial settings.
Managers of software development firms are hesitant to
adopt new practices unless there is reliable evidence that
points to the success of a particular technique. Thus, the ob-
jective of this paper is to present the current state of the art
research and evidence relative to the effectiveness PP for de-
veloping commercial applications in industrial domains. The
primary contribution of this paper is a systematic literature
review (SLR) of empirical studies that focus on the use of PP
in industrial settings and investigate the effectiveness of PP
as it relates to solo programming (SP). Additionally, the SLR
presents any conflicting findings from the analysis, identifies
gaps in the existing body of knowledge, and discusses the
implications of these results for managers and executives of
software development companies.

The rest of the paper is organized as follows. Section 2
summarizes the results of past SLRs on PP. Section 3 out-
lines the review method of the SLR. Section 4 reports the
results of the SLR based on a synthesis of evidence from a
collection of empirical studies. Section 5 formulates advice
for practitioners based on the key findings and implications
of the SLR. Section 6 highlights the limitations of this work.
Section 7 identifies areas for future work in PP research, and
Section 8 presents conclusions from the review.

2 Related Work

Salleh et. al [48] conducted an SLR that presents evidence
relevant to the effectiveness of PP as a pedagogical tool in
higher education CS/SE courses. Along with investigating

Alex Pawelczyk

factors that impact the effectiveness of PP for educational
purposes, the authors identify evidence regarding factors
that impact pair compatibility and investigate which pairing
configurations are considered as most effective. Salleh et. al
also investigate how PP effectiveness and software quality
were measured in the studies that they reviewed. After syn-
thesizing evidence from 74 studies, the authors identified 14
compatibility factors that can affect the effectiveness of PP
as a pedagogical tool. The results also show that student skill
level is the factor that affects the effectiveness of PP the most.
The most common metric for measuring PP effectiveness was
time spent on programming, and the most commonly applied
metrics for software quality were the number of passing test
cases, academic performance, and expert opinion.

Dyba et. al [17] conducted an SLR to determine if existing
empirical evidence substantiates the claims that PP is more
beneficial than SP. They evaluated 15 studies that compared
the effects of PP and SP, where four were conducted with
professionals and 11 with students. Their results found a
general agreement that PP leads to increased software qual-
ity, but there were contradictory results regarding time to
market and effort. Out of eleven studies that investigated the
effect of PP on time to market, two studies show a negative
effect, while the remaining nine show a positive effect. Re-
garding effort, all but one study show a negative effect (i.e.,
working in pairs requires more person-hours to develop the
same software).

After a thorough search, an SLR could not be found that
solely focuses on professional software developers in in-
dustrial domains and investigates the effectiveness of PP as
compared to SP in this setting. Managers and executives of
software development firms are more likely to adopt the prac-
tice of PP if there is a strong body of evidence that suggests
PP is more effective than current business practices, such as
SP. Although studies conducted with students in educational
domains provide valuable insights into the effectiveness of
PP, their results may not generalize well to industrial do-
mains. Thus, this work presents an SLR that examines the
use of PP by professional software developers in industrial
settings and discusses the implications of this evidence. The
goal of this work is to summarize evidence from a multitude
of studies and formulate advice for practitioners based on
the evidence.

3 The Review Method

An SLR is a method for identifying, evaluating, and interpret-
ing all available research relevant to a particular research
question, topic area, or phenomenon of interest [28]. The
primary motivations for conducting the SLR presented in
this work are to summarize the existing evidence relative to
the effectiveness of PP in industrial domains, identify any
gaps in current research, suggest areas for further research,
and provide a framework that appropriately positions new

Investigating the Effectiveness of Pair Programming in Industrial Domains

Specify Research Define Search Scope and

dea for PP SLR Questions Strategy

Define Inclusion and |dentify Relevant

Select Primary Studies &—

Exclusion Criteria Literature
Assess Study Quality ——» Exractrequired data Synthesize Data
Revise the SLR Write the SLR

e
Final SLR

Figure 1. Overview of the SLR review protocol (adapted
from [5, 65]).

research activities. To help fulfill these motivations, the SLR
follows the guidelines that are defined by Kitchenham [28].
Figure 1 visualizes the steps involved in conducting the PP
SLR.

3.1 Research Questions

Table 1 shows the Population, Intervention, Comparison, Out-
comes, and Context (PICOC) structure of the research ques-
tions that guide this work. This SLR focuses on empirical
studies that investigate the effectiveness of PP for developing
commercial software applications in industrial domains.

The primary objective of this SLR is to investigate if PP
performed with professional software developers in an in-
dustrial setting is more beneficial than SP. Contrary to edu-
cational domains where one of the motivations for using PP
is to enhance the student learning experience, using PP in
industry is driven by economic gains, such as faster time to
market, lower development effort, and improved software
quality [48]. Thus, the research questions that guide this SLR
are as follows:

e RQ1: What evidence exists of PP studies conducted in
industrial domains that investigate the effectiveness of
PP for developing commercial software applications?

e RQ2: What methods are used to measure the effective-
ness of PP when applied in industrial domains?

e RQ3: How effective is PP for developing commercial
software applications in industrial domains?

e RQ4: What factors influence the effectiveness of PP
in industrial domains?

RQ1 is motivated by the need to identify studies that re-
port both successful and unsuccessful applications of PP in
industrial settings. RQ2 assesses the metrics that are used

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

Table 1. Summary of PICOC structure for research questions

Population Professional software developers in in-
dustrial domains

Intervention | Pair programming

Comparison | Pair programming vs. solo program-
ming

Outcomes Effectiveness of pair programming

Context Review(s) of any empirical studies
on pair programming within indus-
trial domains. No restrictions exist on
the type of empirical study (e.g., case
study) to be reviewed.

in various studies to measure the effectiveness of PP. Dif-
ferent papers may have different methods for measuring PP
effectiveness. Thus, RQ2 aims to eliminate ambiguity and
specifies how these methods are measured. RQ3 is motivated
by the need to report the degree to which PP has been effec-
tive during the development process of commercial software
applications. This question aims to synthesize evidence from
a number of studies that investigate the effectiveness of PP
and determine if PP is suitable for industrial use. The motiva-
tion for RQ4 originates from the idea that the success of PP
may depend on important factors, such as pair compatibility
or the complexity of a given programming task. The aim of
this question is to provide project managers with valuable
insight regarding the most important factors for achieving
effective PP.

3.2 Identification of Relevant Literature

The aim of any SLR is to find as many primary studies that
relate to the research questions as possible using an un-
biased search strategy [28]. Khan et. al [27] recommend
searching multiple databases to obtain as many citations as
possible and to avoid publication bias. Using the keywords
"pair programming" OR "pair-programming” OR "collaborative
programming”, the first phase of identifying relevant litera-
ture involved searching the following five online databases:
ACM Digital Library, IEEE Xplore, ScienceDirect, Scopus, and
SpringerLink.

After searching the online databases and downloading
relevant studies, the identification of relevant literature con-
tinued into the second phase. The snowballing technique was
applied in this phase, meaning the references of all papers
from the primary search phase were reviewed, and any ref-
erences that were relevant to PP were added to the existing
list of primary study candidates. This resulted in a pool of
405 primary study candidates.

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

3.3 Inclusion and Exclusion Criteria

Studies are eligible for inclusion if they present empirical
data on PP and pass the minimum quality threshold (see
Section 3.4). The primary inclusion criteria aims to select
studies that investigate the effectiveness of PP as compared
to SP when performed by professional software developers
in industrial settings. Further inclusion criterion is composed
of studies that investigate factors that affect the effectiveness
of PP in industrial domains. This SLR includes both qualita-
tive and quantitative research studies that were published
between 1999-2020.

The primary exclusion criterion is composed of PP em-
pirical studies that target the educational domain and use
students as experimental subjects. Based on the exclusion
criteria from [17, 48], studies are also excluded if they meet
at least one of the following criteria:

e Criterion 1: PP studies targeted for CS/SE education.
Rationale: These studies tend to use students as sub-
jects, while the aim of the SLR is to analyze how PP is
used by professional software developers in industrial
domains.

e Criterion 2: PP studies conducted in experimental

settings.
Rationale: Completing programming tasks during ex-
periments typically takes a short amount of time, rang-
ing anywhere from one hour to a few days. This is an
unrealistic scenario in a real-world work environment,
where projects are completed over a series of months,
if not years. Moreover, it is difficult to match the com-
plexity of an experimental programming task to that
of an industrial-sized project.

e Criterion 3: Studies that do not include research ques-
tions or a research design.

Rationale: The aim of this SLR is to use empirically
validated evidence, rather than reports on experiences
or personal opinions.

o Criterion 4: Studies presenting claims by the author(s)
with no supporting empirical data.

Rationale: Empirical data is important to obtain to draw
meaningful conclusions from the results.

e Criterion 5: Studies that focus on the general appli-

cation of Agile/XP.
Rationale: This SLR focuses on the specific practice
of PP, and Agile/XP studies that do not thoroughly
investigate the use of PP in industrial domains do not
provide the necessary empirical data.

e Criterion 6: Studies that describe tools that can sup-

port PP.
Rationale: These studies mainly focus on the technical
details of the software tool being proposed, while this
SLR requires empirical data on the effectiveness of PP
when applied in industry.

e Criterion 7: Studies on distributed PP.

Alex Pawelczyk

Table 2. Quality criteria for selection of primary studies [16]

Questions

1. Is the paper based on empirical research, rather than a
“lessons learned" report based on expert opinion?

2. Are the aims of the research clearly stated?

3. Was the research environment and context of the re-
search adequately described?

4. Was the research design appropriate to address the
aims of the research?

5. Was the recruitment strategy appropriate to the aims
of the research?

6. Was there a control group with which to compare
treatments?

7. Was the data collected in a way that addressed the
research issue?

8. Was the data analysis sufficiently rigorous?

9. Has the relationship between researcher and partici-
pants been adequately considered?

10. Is there a clear statement of findings?

11. Is the study of value for research or practice?

Rationale: Although similar in nature, conducting re-
mote PP sessions incorporates many factors that in-
person PP sessions do not encounter.

e Criterion 8: Studies written in a language other than
English or Polish. Rationale: The author is only capable
of reading in English or Polish. However, this may
result in relevant literature being omitted from the
SLR (see Section 6).

3.4 Quality Assessment

At this point, the initial pool of 405 primary study candidates
was reduced to 33 studies and the qualities of all the remain-
ing studies were assessed based on the 11 criteria used by
the Dyba and Dingseyr SLR on Agile methods [16]. These
criteria assess the reporting, rigor, credibility, and relevance
of the remaining studies. Reporting is considered to be of
high quality if the rationale, aims, and context of a study are
clearly stated. Rigor refers to whether a thorough and appro-
priate approach was applied to the key research methods in a
study. Studies are credible if the findings are well-presented
and meaningful, and relevance describes the usefulness of
findings to the software engineering research community
and industry.

With regards to Table 2, questions 1-3 relate to the quality
of the reporting of the rationale, aims, and context of a study.
Since this SLR is based on evidence and data from empirical

Investigating the Effectiveness of Pair Programming in Industrial Domains

studies, question 1 represents the minimum quality threshold
that is used to exclude non-empirical studies. Questions 4-8
relate to the rigor of the research methods that were used
to establish the trustworthiness of the findings. Questions 9
and 10 assess the credibility of study methodologies and help
ensure that that the findings of different studies are valid
and meaningful. Finally, question 11 assesses the relevance
of a study to the software engineering research community
and industry.

Evaluating each potential primary study based on these
11 criteria provides a measure of the extent to which the
findings of a particular study can make a valuable contribu-
tion to this SLR. Each quality question is either answered
as yes (1 point) or no (0 points), so the quality score of a
study ranges between 0 (Very poor) to 11 (very good). How-
ever, any study that receives a no for criterion 1 (i.e., any
non-empirical study) is excluded from the SLR.

3.5 Data Extraction

A predefined extraction form from the Dyba and Dingseyr
Agile SLR [16] serves as a guide for taking notes on relevant
data from all primary studies. The data extraction form is an
important tool that enables the recording of the full details
of the studies under review and the details on how each
study addresses the research questions of this SLR. More-
over, the data extraction form is a useful tool for organizing
information from a large number of studies.

4 Results

This section reports the results of the SLR based on the
research questions defined in Section 3.1.

4.1 Research Question 1

“What evidence exists of PP studies conducted in in-
dustrial domains that investigate the effectiveness of
PP for developing commercial software applications?"

The SLR identified 33 studies conducted in industrial set-
tings that investigate the use of PP by professional software
developers for developing commercial software applications.
Figure 2 shows that 13 of these studies use qualitative data
analysis methods, 8 use quantitative data analysis methods,
and 12 use a mix of both qualitative and quantitative meth-
ods.

4.2 Research Question 2

“What methods are used to measure the effectiveness
of PP when applied in industrial domains?"

Many studies investigate the effectiveness of PP based
on its impacts on software quality, productivity, knowledge
transfer, effort, job satisfaction, or cost.

4.2.1 Measurements of software quality. Eleven stud-
ies measure the impact of PP on software quality [4, 13, 15,
24, 26, 47, 49, 50, 59, 61, 63]. Five of these studies use defect

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

Primary Study Data Analysis Methods

w
@

=

=]

w

=

g M Qualitative
= B Quantitative
% Wl Mixed

=3

pul

7]

=

[S

S

=z

Data Analysis Method

Figure 2. Overview of the primary study data analysis meth-
ods.

density (i.e., the ratio of total defects to total lines of code)
as a quality metric [13, 15, 24, 59, 61]. Four studies use to-
tal defect count [47, 50, 61, 63]. Hulkko and Abrahamsson
[26] measure software quality using three metrics: density of
coding standard deviation, comment ratio, and relative defect
density. Begel and Nagappan [4] measure code quality based
on the code having fewer bugs and maintaining consistency
with coding guidelines. Schmidt et. al [50] measure internal
software quality by taking an average of the API quality,
code modularity, and code understandability. One study col-
lected data on software quality from surveys and interviews
[49].

4.2.2 Measurements of knowledge transfer. The im-
pact of PP on knowledge transfer is another method that
ten studies use for measuring the effectiveness of PP [4, 15,
19, 21, 50, 59, 61, 63, 69, 70]. Surveys and questionnaires are
the most common methods for obtaining data on knowledge
transfer [4, 15, 50, 59, 61, 63]. A qualitative data analysis
of full-length video recordings of industrial PP sessions is
an approach used in two studies [69, 70]. Interviews of de-
velopers are applied by Gittins et. al [21] to gain insights
into the effectiveness of PP for improving communication
and spreading knowledge throughout a team. Fronza et al.
[19] collect data throughout their study using PROM (Pro
Metrics), an automated, non-intrusive tool for collecting and
analyzing software process and product metrics. They fo-
cus on collecting data related to the amount of time that
novices spend their time doing PP and draw conclusions
about knowledge transfer from this data.

4.2.3 Measurements of productivity. Seven studies [26,
31, 34,41, 52, 61, 70] evaluate the effectiveness of PP based on
the impact that PP has on worker productivity. Sillitti et. al
[52] measure productivity based on the amount of time that

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

developers working in a pair spend in directly productive ac-
tivities. Productivity is defined by Vanhanen and Korpi [61]
as lines of code per hour. Based on interviews of software
professionals, Melo et. al [34] report that that workers have
mixed definitions of productivity. Three interviewees men-
tion timeliness as a criterion for productivity, three mention
quantity, two mention quality, and one mentions customer
satisfaction. Productivity is measured by Parrish et. al [41]
as the average number of unadjusted function points per
unit of time. Hulkko and Abrahamsson [26] calculate pro-
ductivity as the ratio of produced logical code lines to spent
effort. Zieris and Prechelt [70] employ the Strauss and Corbin
approach of Grounded Theory Methodology (GTM). Man-
naro et. al [31] use a survey to obtain developer feelings on
whether they believe that PP speeds up the overall software
development process.

4.2.4 Measurements of effort. The amount of time and
effort spent on developing software during PP sessions is
used by five studies to determine PP effectiveness [15, 26, 59,
61, 63]. Four of these studies use surveys to gain insight into
the amount of time and effort that is spent doing PP [15, 59,
61, 63]. Hulkko and Abrahamsson [26] use the quantitative
metric of pair programming effort percent, which is the ratio
of effort spent on PP activities to respective solo activities.

4.2.5 Measurements of job satisfaction. Five studies in-
corporate job satisfaction as a measure of effectiveness [4,
21, 31, 61, 63]. Surveys of professional software developers
are conducted in four of these studies [4, 31, 61, 63]. One
study obtains data on job satisfaction via interviews [21].

4.2.6 Measurements of project cost. Only two studies
use development cost to measure PP effectiveness [4, 59].
Both of these studies use surveys to gather insight into the
relationship between PP and development cost.

4.3 Research Question 3

“How effective is PP for developing commercial soft-
ware applications in industrial settings?"

4.3.1 PP effects on software quality. Ten out of eleven
studies that investigate the impact of PP on software quality
report that PP has a positive effect. Two of these studies re-
port perceivable but small improvements in software quality
[13, 63]. One study reports that 80% of the developers across
four teams were more confident in the design and code that
they generated while PP than when they work alone [15].
Questionnaire results from another study indicate that PP
was the second most important practice (after test-driven
development) for increasing the quality of the system and
its design [61]. One study shows that software quality im-
proved as engineers got positive reinforcement from each
other, and software developed via PP had no patch rejections
[47]. Interview results from another study cite an increase
in code quality as one of the top three benefits of PP [49].

Alex Pawelczyk

Sun et. al [59] survey software professionals that either
have or do not have prior experience working with PP. Both
groups believe that PP increases software quality, but there
is a statistically significant difference (p < 0.01) in the mag-
nitude of increase in software quality. Respondents with PP
experience believe that PP increases quality by 26, 35, and
42 percent in low, medium, and high complexity tasks, re-
spectively. Respondents without PP experience believe that
PP increases software quality by 9, 18, and 29 percent.

Survey results from the Begel and Nagappan study [4]
show that Microsoft professionals cite fewer bugs in the
source code as the top benefit of PP, and higher quality
code is the third most cited benefit of PP. Schmidt et. al [50]
indicate that both low and high adopters of PP see a perceived
improvement in all software quality aspects. Moreover, the
high adopters of PP indicate a higher level of improvement
in software quality compared to the low adopters. Fitzgerald
and Hartnett [24] report that the required code quality level
of the Intel Network Processor Division engineering team
is achieved earlier when applying PP. On one project, the
components that were developed via PP had the lowest defect
density in the whole product (a factor of seven below the
component with the highest density).

The study conducted by Hulkko and Abrahamsson [26] is
the only primary study that does not report a positive effect
of PP on software quality. The results of their multiple case
study show conflicting findings with regards to software
quality among different cases. One case reports a lower num-
ber of defects, while another case reports a higher number
of defects. The authors conclude that PP does not provide as
extensive quality benefits as suggested in the literature.

4.3.2 PP effects on knowledge transfer. Ten studies re-
port that PP can have a positive effect on knowledge transfer
among a team [4, 15, 19, 21, 50, 59, 61, 63, 69, 70]. Three
studies report that PP is particularly effective for facilitating
knowledge transfer for inexperienced (i.e., novice) develop-
ers [15, 19, 63]. Two studies indicate that frequent rotation
of partners can have a positive effect on knowledge trans-
fer [21, 61]. Sun et. al [59] report that knowledge transfer
is perceived to be the largest in high-complexity projects,
junior-senior pairs, and pairs in which both developers have
prior PP experience. The second most cited benefit of PP
of the Begel and Nagappan study [4] is the spread of code
understanding between members of a pair. Two separate
studies by Zieris and Prechelt [69, 70] identify that not every
episode of knowledge transfer goes frictionless, and there is
aneed to train developers to become better at PP to facilitate
positive knowledge transfer. However, zero studies report
that PP has an overall negative effect on knowledge transfer.

4.3.3 PP effects on productivity. The results from seven
studies that investigate the impact of PP on productivity are
mixed. Sillitti et. al [52] show that PP helps developers elim-
inate distracting activities and focus on productive activities.

Investigating the Effectiveness of Pair Programming in Industrial Domains

Vanhanen and Korpi [61] report that PP is considered the
most important Agile practice that positively impacts the
project productivity. Zieris and Prechelt [70] attempt to de-
bunk the dichotomy that developers are either good enough
to perform a productive PP session, or their skill levels are
too far apart to be productive so they resort to a knowl-
edge transfer session. The authors conclude that PP is both
a productive and knowledge transfer technique. Survey re-
sults from the Mannaro et. al study [31] show that 72.7% of
developers believe that PP speeds up the overall software
development process.

Melo et. al [34] report that for complex tasks, some devel-
opers feel demotivated to work in pairs because they would
like to have time to think about the problem alone before
discussing it. This indicates that PP could have a negative
impact on productivity. Parrish et. al [41] identify that pairs
working together are not naturally more productive than solo
developers. They conclude that pairs need the collaborative
role-based protocol that PP provides to be productive. The
multiple case study of Hulkko and Abrahamsson [26] reveals
contradicting results, where two cases report an increase in
productivity when doing PP, and one case shows an increase
in productivity when conducting SP. Based on the empiri-
cal data, the authors conclude that a superior programming
style for increasing productivity could not be detected.

4.3.4 PP effects on effort. Drobka et. al [15] report that
a negative effect of PP is that it requires large blocks of time.
Vanhanen and Lassenius [63] conclude that in general, PP
requires more effort than SP. They point out that although
PP is exhaustive, the effort decreases to the level of SP over
time. Sun et. al [59] and Vanhanen and Korpi [61] report
that PP may lower the total effort for complex tasks, but for
simple tasks, effort was considered higher with PP. Sun et.
al also claim that a pair of junior developers increases effort,
while a pair of senior developers decreases effort. Hulkko
and Abrahamsson [26] report that the relative amount of
effort spent on PP is highest in the beginning of a project
and the defect correction phase of the project.

4.3.5 PP effects on job satisfaction. PP had a positive
effect on job satisfaction in three studies [31, 61, 63]. The
tenth most cited benefit of PP in the Begel and Nagappan
study [4] is an increase in morale. Gittins et. al [21] report
mixed feelings on PP, where some developers experienced
an increase in morale, but more experienced developers were
concerned that PP undermined their status in the company.

4.3.6 PP effects on project cost. Sun et. al [59] report
that survey respondents with PP experience believe that PP
reduces the overall project cost by 12%, but those without
PP experience believe that PP increases the cost by 5%. The
difference between the two groups is statistically significant
(p < 0.001). Survey respondents from the Begel and Nagappan
study [4] cite cost efficiency to be the number one problem

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

with PP. One manager states, “if I have a choice, I can employ
one star programmer instead of two programmers who need
to code in a pair" Another survey respondent stated that PP,
“requires twice as many people,” making it, “difficult to justify
the cost up front."

4.4 Research Question 4

“What factors influence the effectiveness of PP in in-
dustrial settings?"

4.4.1 Expertise level. Chong and Hurlbutt [9] report that
expertise is an important factor that influences pair inter-
actions, where pairing an inexperienced developer with an
experienced one can lead to ineffective PP sessions. Drobka
et. al [15] claim that pairing two inexperienced developers
is not desirable because they may not understand develop-
ment practices and how their tasks fit in the big picture.
Eight studies report that pairing a novice developer with
an expert can be useful for integrating novices into a team
[11, 19, 22, 26, 40, 46, 50, 53]. Vanhanen and Lassenius [63]
report that the most effective pairs consist of a senior and
junior developer, or pairs should have knowledge areas that
complement each other. Sun et. al [59] state that junior-
senior pairs generate the most knowledge transfer, while
junior-junior pairs generate the least. There is also more
effort for junior-junior pairs in which neither has PP expe-
rience, and less effort in senior-senior pairs in which both
have PP experience. Begel and Nagappan [4] report that the
fifth most cited problem with PP is skill differences amongst
a pair. Gittins et. al [21] report that PP works best when there
is a harmony of skills and temperament between the paired
developers, but PP can also be useful for mentoring novice
developers.

4.4.2 Personality and social compatibility. Personal-
ity traits within a pair are also reported as an important
factor that determines the effectiveness of PP. Drobka et. al
[15] indicate that a problem with PP is that managers must
choose the pairs on their team carefully (e.g., PP can be inef-
fective with shy or overbearing personalities, or with two
inexperienced developers). Based on a survey of 60 program-
mers, Chao and Atli [8] identify open-minded as the most
important personality trait (75% of responses) followed by
creative, attentive, logical, and flexible. Dick and Zarnett [14]
claim that effective PP is difficult to achieve and requires a
careful cultivation of personalities within the development
team. The authors identify that effective communication,
comfortableness working with one another, confidence in
one’s abilities, and the ability to compromise as the most
essential personality traits for PP success.

Begel and Nagappan [4] cite personality clashes and inef-
fective communication as the third and tenth biggest prob-
lems with PP, respectively. Sfetsos et. al [51] report that other
problems with PP stem from difficulties that some program-
mers have when working with others. Interviews from the

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

Gittins et. al study [21] reveal that social compatibility has
an impact on the effectiveness of PP. One developer states,
“there are probably one or two people I prefer not to pair with,
when you’re having a conversation they’re always trying to
get one up on you.” Another developer states, “... the biggest
problem is personality clashes. Generally most people here are
very amenable. ... I have found myself preferring to partner
with some people as opposed to others, just generally because
we get on a bit better, and work in a similar way.”

4.4.3 Task complexity. Six studies report that the com-
plexity of a given task can impact the effectiveness of PP
[24, 26, 34, 59, 61, 63]. Vanhanen and Lassenius [63] iden-
tify that a large proportion of developers propose that PP
should be used for complex tasks. Vanhanen and Korpi [61]
delineate that PP is better suited for complex tasks than for
easy tasks, in which PP can reduce effort for complex tasks,
but increase effort for simple tasks. Melo et. al [34] report
that PP can be ineffective on both complex and simple tasks.
Conducting PP for simple tasks can be a waste of time, and
for complex tasks, some feel demotivated to work in pairs
because they would like to have time to think about the
problem alone before discussing it.

Hulkko and Abrahamsson [26] report that developers feel
that PP is more useful for demanding and complex tasks
than for rote tasks. On the other hand, some developers
feel that tasks which require a lot of logical thinking are
best when done solo. Pair programming is beneficial when
writing code which has many dependencies with other parts
of the software. On the other hand, according to a team
member in case two, PP for simple tasks helps a developer
find mistakes that he or she has become blind to.

Results from the Sun et. al study [59] show that PP can
increase effort in low-complexity tasks and decrease effort
for high-complexity tasks. Moreover, PP lowers the defect
rate in all types of projects, but as the project complexity in-
creases, the defect rate decreases more. A similar pattern was
found with the impact of PP on knowledge transfer, where
as the complexity of a project increases, more knowledge
transfer occurs. Fitzgerald and Hartnett [24] report that PP
is unsuitable for simple or well understood problems, which
could be fixed as quickly as a single developer could type.
PP can also become frustrating when doing lots of small
changes (e.g.. eliminating TO-DO’s).

4.4.4 Driver-navigator interactions. The ways in which
pairs interact within the driver-navigator roles is another fac-
tor that impacts the effectiveness of PP. Chong and Hurlbutt
[9] identify that pairs appear to be most effective when both
programmers take on driver and navigator responsibilities.
Their observations show pairs engaging in a natural pattern
of interaction, rather than having an explicit division of la-
bor. Similar findings are reported Freudenberg et. al [18], in
which rather than working at different levels of abstraction,
the driver and navigator tend to talk in terms on the same

Alex Pawelczyk

levels of abstraction. The authors suggest that the driver and
navigator should form a ‘cognitive tag team’ in which they
work together in synchrony and frequently switch roles to
alleviate the cognitive load of the driver.

Vanhanen and Korpi [61] note that frequent rotation of
pairs can lead to an increase in knowledge transfer at the cost
of a drop in productivity. Schmidt et. al [50] indicate that fre-
quently switching roles allows developers to easily challenge
each other on the code quality. O’Donnell and Richardson
[40] report that frequent role switching is important to avoid
having the navigator become bored and disengaged. Plonka
et. al [45] identify that disengagement can negatively impact
the effectiveness of PP. They suggest that in a novice-expert
pair, the expert should encourage the novice to drive and
provide sufficient explanation while working. Plonka et. al
[44] also reports that contributions of both developers are
a necessary precondition for achieving the benefits of PP,
such as improved decision making.

4.4.5 Work environment. A given work environment is
another factor that can impact PP effectiveness [4, 46, 56,
64]. Begel and Nagappan [4] report that scheduling time
to work in pairs is the second most cited problem of PP.
Vanhanen et. al [64] report problems with the resourcing
of PP, where finding time amongst developers is not easy.
Another problem stems from having a proper infrastructure
to conduct PP, and implementing a dedicated PP room can
solve this issue. Plonka and van der Linden [46] also claim
that it is important to provide a suitable environment for PP
(i.e., emphasis on collective code ownership and considering
PP during the planning process). Socha and Sutanto [56]
indicate that ad hoc meetings are frequent during the course
of PP sessions, and social interactions of the PP practice
extends outside of the pair. Their observations reveal that
pairs do not create artificial boundaries around themselves
and work in isolation. Instead, they intentionally configure
their workspace and social conventions to enable peripheral
awareness of what is happening nearby.

5 Advice for Practitioners

This section formulates insights from the SLR results in the
form of explicit, procedural, and practical advice.

5.1 Investing in Better Software Quality

The results of this SLR show that an increase in software
quality is one of the most reported benefits of applying PP
in industrial domains. Most of the metrics that are used
to measure software quality are related to the number of
defects in the code that is produced when conducting PP. This
suggests that the act of PP provides an inherent, full-time
code review during the software development process. The
main advantage of a continuous code review is that software
defects are more likely to be found earlier in the software
development process and be cheaper to fix. Although two

Investigating the Effectiveness of Pair Programming in Industrial Domains

studies report that a negative aspect of PP is an increase
in project cost, one can view this cost as an investment
into an ongoing code review that occurs throughout the
software development process. PP probably increases the
cost of developing just the code, but reduces the overall cost
by catching defects sooner when they are cheaper to fix. In
the long run, PP is likely to pay off and save later debugging
and repair costs (about 10 times what it costs to fix during
the time you are programming).

The investment into better software quality may especially
pay off for safety-critical systems. In an application domain
where defects can result in the loss of human lives (e.g.,
autonomous vehicles), it is crucial to incorporate techniques
that can help reduce or eliminate all bugs. For example, many
studies report that formal methods are especially useful for
increasing the in the software development process of safety-
critical systems, where the end result is quality software of
the highest integrity. The results of this SLR suggest that PP
can serve as an alternative approach for producing quality
software with minimal defects. Since PP is shown to have a
positive effect on reducing bugs in the overall system, project
managers should consider adopting PP for the development
of safety-critical systems.

5.2 Strategic Implementation of PP

PP is one of the core practices of XP, and Kent Beck suggests
that PP should be used all the time and for every task [3].
However, the results of this SLR show that employing this
ideology will result in ineffective PP. Rather than blindly ap-
plying PP to all stages of the software development process,
project managers and developers must consider the appropri-
ate scenarios where PP has the highest levels of effectiveness.
Specifically, the complexity of a task, level of pair expertise,
and social compatibility among a pair are three factors that
need to be considered.

There is general agreement among the primary studies of
this SLR that PP is better suited for complex tasks than for
easy tasks. Using PP for complex tasks can increase knowl-
edge transfer, reduce effort, and lower the number of defects
in the software. On the other hand, conducting PP for simple
tasks can be a waste of time and resources. Simple tasks are
also likely to result in fewer bugs than complex tasks, so the
continuous code review aspect of PP is especially beneficial
for complex tasks.

The results of this SLR also indicate that the level of ex-
pertise of pair members has an impact on the effectiveness
of PP. Depending on the needs of an organization, project
managers should strongly consider this important factor. For
example, if a high priority issue is to integrate new and inex-
perienced developers into a team, then a form of mentorship
can be employed via junior-senior PP. To avoid disengage-
ment and increase knowledge transfer, senior developers
should clearly communicate their thoughts with their part-
ner when driving. Seniors should also encourage novices to

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

drive, and novices should be confident knowing that they
have the security of a senior developer in the navigator role.
However, in a scenario where there is time pressure to finish
a task, pairing two senior developers together is an appro-
priate strategy.

When cultivating a PP team, managers should consider
allowing the developers to choose their pairing partners.
Certain people work together better than others, and the
employees themselves are likely to have the best knowledge
of who they work best with. Since programmer expertise is
an important factor that needs to be considered depending on
the needs of an organization, programmers should provide
management with their top partner choices depending on
skill level. For example, a senior developer would cite the
top three senior and junior developers that they would want
to work with (total list size of six). Providing developers
with this choice will likely result in higher motivation to
achieve proper results and increase job satisfaction. On the
other hand, having a project manager choose partners or
conducting random assignment may lead to ineffective PP.

5.3 Embracing a Team-Oriented Culture

Another important factor for achieving effective PP in indus-
trial domains lies in the culture of a company. PP should be
used in companies that embrace a team-oriented culture and
collective code ownership. In a study conducted by Murphy
et. al [37], Microsoft employees mention that they are eval-
uated based on their own accomplishments and that they
are directly compared to coworkers in their own team. This
leads to scenarios where engaging in PP can take time away
from one’s own contributions while increasing the value of
another’s. For PP to be effective, a company should focus
developer efforts on achieving team-oriented goals, rather
than individual ones. Moreover, it is important to emphasize
collective code ownership and perform team evaluations
instead of individual assessments.

6 Limitations

Several factors need to be considered when generalizing
the results of this SLR. First, during the process of identify-
ing relevant literature, primary studies were only obtained
from electronic sources. Without searching non-electronic
conference proceedings and journals, there is potential that
relevant studies were omitted from this SLR. Moreover, only
papers written in the languages of English or Polish were
considered during the primary study selection process. Omit-
ting papers written in other languages may have resulted in
the discovery of relevant studies and key insights that could
have been used in this SLR.

Another exclusion criteria poses a limitation because it
excludes studies that use PP in experimental settings. Experi-
mental studies are important because they are replicable and
provide researchers with an opportunity to gain quantitative

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

results that are more statistically significant than industrial
studies, which tend to only be one data point. Experiments
also enable the use of a control group, whereas asking two
teams to perform identical tasks in an industrial setting is
impractical and expensive. Despite their valuable aspects,
experimental studies were excluded because this SLR focuses
on the effectiveness of PP for the developing commercial soft-
ware systems. Compared to an experiment where subjects
are asked to develop small-scale systems in a short period of
time, an industrial domain features larger and more complex
software systems that can take months, or even years, to
develop. Since it is impractical, if not impossible, to develop
an application of industrial size and complexity in an exper-
iment, it was necessary to exclude these studies from the
SLR.

Another issue stems from the fact that only one person
(the author) was responsible for carrying out the entire re-
view process. The author defined the review protocol and
carried out the major tasks involved in each phase of the
SLR, which may have unwittingly biased the results of the
SLR. For example, having only one person to select primary
studies based on a set of inclusion and exclusion criteria
could have resulted in the inclusion of studies that should
have been omitted (or vice versa). However, an effort was
made to avoid bias by closely following the recommenda-
tions suggested in the SLR guidelines [28].

7 Future Work

Future work plans to recreate the work of Cockburn and
Williams [10] and assess the modern-day costs and benefits
of using PP in industry. Specifically, this work will compare
the doubled cost of producing a line of code to the savings
that results from discovering defects during PP sessions (as a
result of the continuous code review), rather than being left
to be discovered during testing (or later) and fixing when
they are more expensive to fix. Cockburn and Williams re-
port that the initial 15% increase in project development cost
is repaid in shorter and less expensive testing, quality assur-
ance, and field support [10]. The goal of the future research is
to recreate the Cockburn and Williams study by using newer
data and seeing if the costs and benefits from 2001 still hold
up twenty years later. However, one key difference is that
the previous study by Cockburn and Williams uses data from
small-scale student experiments, but the new study will use
data from both industry and experiments.

8 Conclusion

The results of this SLR suggest that PP can be successfully
applied to the development process of commercial software
applications. However, contrary to the mindset of XP where
PP is blindly used for all development tasks, the results of this
research suggest that PP effectiveness depends on the context

Alex Pawelczyk

of a given work scenario. This includes factors like organiza-
tional priorities, programming task complexity, social and
technical pair compatibility, work environment, and com-
pany culture. As with many things in life, finding a proper
balance between the use of PP and SP will lead to optimal
development. Early evidence suggests that PP offers an ex-
tensive set of benefits in industry, and it is important for the
software engineering community to continue investigating
the costs and benefits of this practice.

Acknowledgments

I would like to express my very great appreciation to Dr.
Daniel M. Berry for his valuable and constructive sugges-
tions during the planning and development of this research
work. I would also like to thank David Radke (PhD candi-
date, University of Waterloo) for his help during the revision
process of this paper.

References

[1] Mustafa Ally, Fiona Darroch, and Mark Toleman. 2005. A Framework
for Understanding the Factors Influencing Pair Programming Success.
In Extreme Programming and Agile Processes in Software Engineering,
Hubert Baumeister, Michele Marchesi, and Mike Holcombe (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 82-91.

[2] E. Arisholm, H. Gallis, T. Dyba, and D. L. K. Sjoberg. 2007. Evaluating
Pair Programming with Respect to System Complexity and Program-
mer Expertise. IEEE Transactions on Software Engineering 33, 2 (2007),
65-86.

[3] Kent Beck. 1999. Extreme Programming Explained: Embrace Change.
Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Andrew Begel and Nachiappan Nagappan. 2008. Pair Programming:
What’s in it for Me? 120-128. https://doi.org/10.1145/1414004.1414026

[5] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner,

and Mohamed Khalil. 2007. Lessons from Applying the Systematic

Literature Review Process within the Software Engineering Domain.

J. Syst. Softw. 80, 4 (April 2007), 571-583. https://doi.org/10.1016/j.jss.

2006.07.009

Gerardo Canfora, Aniello Cimitile, Felix Garcia, Mario Piattini, and

Corrado Aaron Visaggio. 2007. Abstract Evaluating performances of

pair designing in industry. Journal of Systems and Software 80 (08

2007), 1317-1327. https://doi.org/10.1016/].js5.2006.11.004

Gerardo Canfora, Aniello Cimitile, Corrado Aaron Visaggio, Felix

Garcia, and Mario Piattini. 2006. Performances of Pair Designing

on Software Evolution: a controlled experiment. 197-205. https:

//doi.org/10.1109/CSMR.2006.40

[8] J. Chao and G. Atli. 2006. Critical personality traits in successful pair
programming. In AGILE 2006 (AGILE’06). 5 pp.—93.

[9] J. Chong and T. Hurlbutt. 2007. The Social Dynamics of Pair Pro-
gramming. In 29th International Conference on Software Engineering
(ICSE’07). 354-363.

[10] Alistair Cockburn and Laurie Williams. 2001. The Costs and Benefits
of Pair Programming. Addison-Wesley Longman Publishing Co., Inc.,
USA, 223-243.

[11] Irina Coman, Alberto Sillitti, and Giancarlo Succi. 2008. Investigating
the Usefulness of Pair-Programming in a Mature Agile Team, Vol. 9.
127-136. https://doi.org/10.1007/978-3-540-68255-4_13

[12] E.diBella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and J. Vlasenko.
2013. Pair Programming and Software Defects—A Large, Industrial
Case Study. IEEE Transactions on Software Engineering 39, 7 (2013),
930-953.

[6

—

7

—

https://doi.org/10.1145/1414004.1414026
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.11.004
https://doi.org/10.1109/CSMR.2006.40
https://doi.org/10.1109/CSMR.2006.40
https://doi.org/10.1007/978-3-540-68255-4_13

Investigating the Effectiveness of Pair Programming in Industrial Domains

(13]

[14

=

[15

[

[16

—

(17]

(18

[t

[19

—

[20

[t

[21

—

[22

—

(23]

[24]

[25]

[26]

[27

—

(28]

[29]

(30]

(31]

(32]

E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and J. Vlasenko.
2013. Pair Programming and Software Defects—A Large, Industrial
Case Study. IEEE Transactions on Software Engineering 39, 7 (2013),
930-953.

Andrew Dick, Bryan Zarnett, Red Hook, Group Red, and Hook Group.
2002. Paired Programming and Personality Traits. (06 2002).

J. Drobka, D. Noftz, and Rekha Raghu. 2004. Piloting XP on four
mission-critical projects. IEEE Software 21, 6 (2004), 70-75.

Tore Dyba and Torgeir Dingseyr. 2008. Empirical Studies of Agile
Software Development: A Systematic Review. Inf. Softw. Technol. 50,
9-10 (Aug. 2008), 833-859. https://doi.org/10.1016/j.infsof.2008.01.006
T. Dyb4, E. Arisholm, D. I. K. Sjoberg, J. E. Hannay, and F. Shull.
2007. Are Two Heads Better than One? On the Effectiveness of Pair
Programming. IEEE Software 24, 6 (2007), 12-15.

S. Freudenberg, P. Romero, and B. du Boulay. 2007. "Talking the talk":
Is intermediate-level conversation the key to the pair programming
success story?. In Agile 2007 (AGILE 2007). 84-91.

L. Fronza, A. Sillitti, and G. Succi. 2009. An interpretation of the results
of the analysis of pair programming during novices integration in
a team. In 2009 3rd International Symposium on Empirical Software
Engineering and Measurement. 225-235.

Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, and Jelena Vlasenko.
2011. Analysing the Usage of Tools in Pair Programming Sessions.
Lecture Notes in Business Information Processing 77, 1-11. https://doi.
org/10.1007/978-3-642-20677-1_1

Robert Gittins, Julian Bass, and Sian Hope. 2004. A Comparison of
Software Development Process Experiences, Vol. 3092. 231-236. https:
//doi.org/10.1007/978-3-540-24853-8_30

Peggy Gregory, Diane Strode, Raid Algaisi, Helen Sharp, and Leonor
Barroca. 2020. Onboarding: How Newcomers Integrate into an Agile
Project Team. 20-36. https://doi.org/10.1007/978-3-030-49392-9_2

J. E. Hannay, E. Arisholm, H. Engvik, and D. I K. Sjoberg. 2010. Effects
of Personality on Pair Programming. IEEE Transactions on Software
Engineering 36, 1 (2010), 61-80.

Gerard Hartnett and Brian Fitzgerald. 2005. A Study of the Use of
Agile Methods within Intel. International Federation for Information
Processing Digital Library; Business Agility and Information Technology
Diffusion; 180. https:/doi.org/10.1007/0-387-25590-7_12

Sven Heiberg, Uuno Puus, Priit Salumaa, and Asko Seeba. 2003. Pair-
Programming Effect on Developers Productivity. In Proceedings of
the 4th International Conference on Extreme Programming and Agile
Processes in Software Engineering (Genova, Italy) (XP’03). Springer-
Verlag, Berlin, Heidelberg, 215-224.

H. Hulkko and P. Abrahamsson. 2005. A multiple case study on the
impact of pair programming on product quality. In Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE 2005. 495-
504.

Khalid S. Khan, Regina Kunz, Jos Kleijnen, and Gerd Antes. 2011.
Systematic reviews to support evidence-based medicine.

Barbara Kitchenham. 2004. Procedures for Performing Systematic
Reviews. Keele, UK, Keele Univ. 33 (08 2004).

Kim Man Lui and Keith C. C. Chan. 2003. When Does a Pair Outper-
form Two Individuals?. In Extreme Programming and Agile Processes
in Software Engineering, Michele Marchesi and Giancarlo Succi (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 225-233.

K. M. Lui, K. C. C. Chan, and J. Nosek. 2008. The Effect of Pairs in
Program Design Tasks. IEEE Transactions on Software Engineering 34,
2 (2008), 197-211.

Katiuscia Mannaro, Marco Melis, and Michele Marchesi. 2004. Em-
pirical Analysis on the Satisfaction of IT Employees Comparing XP
Practices with Other Software Development Methodologies. 166-174.
https://doi.org/10.1007/978-3-540-24853-8_19

Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fer-
nald. 2002. The Effects of Pair-Programming on Performance in an

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

Introductory Programming Course. In Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education (Cincinnati, Ken-
tucky) (SIGCSE ’02). Association for Computing Machinery, New York,
NY, USA, 38-42. https://doi.org/10.1145/563340.563353

Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fer-
nald. 2006. Pair Programming Improves Student Retention, Confi-
dence, and Program Quality. Commun. ACM 49, 8 (Aug. 2006), 90-95.
https://doi.org/10.1145/1145287.1145293

Claudia Melo, Daniela S. Cruzes, Fabio Kon, and Reidar Conradi. 2011.
Agile Team Perceptions of Productivity Factors. In Proceedings of the
2011 Agile Conference (AGILE "11). IEEE Computer Society, USA, 57-66.
https://doi.org/10.1109/AGILE.2011.35

Raimund Moser, Marco Scotto, Alberto Sillitti, and Giancarlo Succi.
2007. Does XP Deliver Quality and Maintainable Code?, Vol. 4536.
105-114. https://doi.org/10.1007/978-3-540-73101-6_15

M. Mueller. 2003. Are Reviews an Alternative to Pair Programming?
Empirical Software Engineering 9 (2003), 335-351.

Brendan Murphy, Thomas Zimmermann, Laurie Williams, Nachiappan
Nagappan, and Andrew Begel. 2013. Have Agile Techniques been the
Silver Bullet for Software Development at Microsoft. International
Symposium on Empirical Software Engineering and Measurement. https:
//doi.org/10.1109/ESEM.2013.21

Jerzy Nawrocki and Adam Wojciechowski. 2001. Experimental Evalu-
ation of Pair Programming. Proceedings of the 12th European Software
Control and Metrics Conference (08 2001).

John T. Nosek. 1998. The Case for Collaborative Programming. Com-
mun. ACM 41, 3 (March 1998), 105-108. https://doi.org/10.1145/272287.
272333

Michael O’Donnell and Ita Richardson. 2008. Problems Encountered
When Implementing Agile Methods in a Very Small Company. Software
Process Improvement, 13-24. https://doi.org/10.1007/978-3-540-85936-
9.2

A. Parrish, R. Smith, D. Hale, and J. Hale. 2004. A field study of
developer pairs: productivity impacts and implications. IEEE Software
21, 5 (2004), 76-79.

Monvorath Phongpaibul and Barry Boehm. 2006. An Empirical Com-
parison between Pair Development and Software Inspection in Thai-
land. In Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering (Rio de Janeiro, Brazil) (ISESE 06).
Association for Computing Machinery, New York, NY, USA, 85-94.
https://doi.org/10.1145/1159733.1159749

M. Phongpaibul and B. Boehm. 2007. A Replicate Empirical Com-
parison between Pair Development and Software Development with
Inspection. In First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). 265-274.

L. Plonka, J. Segal, H. Sharp, and J. v. d. Linden. 2012. Investigating
Equity of Participation in Pair Programming. In 2012 Agile India. 20—
29.

Laura Plonka, Helen Sharp, and Janet van der Linden. 2012. Disengage-
ment in Pair Programming: Does It Matter?. In Proceedings of the 34th
International Conference on Software Engineering (Zurich, Switzerland)
(ICSE ’12). IEEE Press, 496-506.

L. Plonka and J. van der Linden. 2012. Why developers don’t pair more
often. In 2012 5th International Workshop on Co-operative and Human
Aspects of Software Engineering (CHASE). 123-125.

C. Poole and J. W. Huisman. 2001. Using extreme programming in a
maintenance environment. IEEE Software 18, 6 (2001), 42-50.

N. Salleh, E. Mendes, and J. Grundy. 2011. Empirical Studies of Pair
Programming for CS/SE Teaching in Higher Education: A Systematic
Literature Review. IEEE Transactions on Software Engineering 37, 4
(2011), 509-525.

C. Schindler. 2008. Agile Software Development Methods and Prac-
tices in Austrian IT-Industry: Results of an Empirical Study. In 2008
International Conference on Computational Intelligence for Modelling

https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1007/978-3-642-20677-1_1
https://doi.org/10.1007/978-3-642-20677-1_1
https://doi.org/10.1007/978-3-540-24853-8_30
https://doi.org/10.1007/978-3-540-24853-8_30
https://doi.org/10.1007/978-3-030-49392-9_2
https://doi.org/10.1007/0-387-25590-7_12
https://doi.org/10.1007/978-3-540-24853-8_19
https://doi.org/10.1145/563340.563353
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1109/AGILE.2011.35
https://doi.org/10.1007/978-3-540-73101-6_15
https://doi.org/10.1109/ESEM.2013.21
https://doi.org/10.1109/ESEM.2013.21
https://doi.org/10.1145/272287.272333
https://doi.org/10.1145/272287.272333
https://doi.org/10.1007/978-3-540-85936-9_2
https://doi.org/10.1007/978-3-540-85936-9_2
https://doi.org/10.1145/1159733.1159749

CS846: Advanced Topics in Software Engineering, Aug. 7, 2020, Waterloo, ON

[50

[t}

[51

—

[52

—

(53]

(54]

(55]

(56]

(57]

(58]

(59]

(60]

(61]

[62]

(63]

(64]

(65]

(66]

Control Automation. 321-326.

Christoph Tobias Schmidt, Srinivasa Ganesha Venkatesha, and Juergen
Heymann. 2014. Empirical Insights into the Perceived Benefits of
Agile Software Engineering Practices: A Case Study from SAP. In
Companion Proceedings of the 36th International Conference on Software
Engineering (Hyderabad, India) (ICSE Companion 2014). Association
for Computing Machinery, New York, NY, USA, 84-92. https://doi.
org/10.1145/2591062.2591189

Panagiotis Sfetsos, Lefteris Angelis, and Ioannis Stamelos. 2006. In-
vestigating the extreme programming system-An empirical study.
Empirical Software Engineering 11 (06 2006), 269-301. https://doi.org/
10.1007/510664-006-6404-6

A. Sillitti, G. Succi, and J. Vlasenko. 2012. Understanding the impact
of Pair Programming on developers attention: A case study on a large
industrial experimentation. In 2012 34th International Conference on
Software Engineering (ICSE). 1094-1101.

Alexandre Silva, Fabio Kon, and Cicero Torteli. 2005. XP South of the
Equator: An eXPerience Implementing XP in Brazil, Vol. 3556. 10-18.
https://doi.org/10.1007/11499053_2

R. Sison. 2008. Investigating Pair Programming in a Software Engi-
neering Course in an Asian Setting. In 2008 15th Asia-Pacific Software
Engineering Conference. 325-331.

R. Sison. 2009. Investigating the Effect of Pair Programming and
Software Size on Software Quality and Programmer Productivity. In
2009 16th Asia-Pacific Software Engineering Conference. 187-193.

D. Socha and K. Sutanto. 2015. The "Pair" as a Problematic Unit of
Analysis for Pair Programming. In 2015 IEEE/ACM 8th International
Workshop on Cooperative and Human Aspects of Software Engineering.
64-70.

Matt Stephens and Doug Rosenberg. 2003. Pair Programming (Dear
Uncle Joe, My Pair Programmer Has Halitosis). 135-160. https://doi.
org/10.1007/978-1-4302-0810-5_6

Giancarlo Succi, Witold Pedrycz, Michele Marchesi, and Laurie
Williams. 2002. Preliminary Analysis of the Effects of Pair Program-
ming on Job Satisfaction. (08 2002).

Wenying Sun, George Marakas, and Miguel Aguirre-Urreta. 2015. Effec-
tiveness Of Pair Programming: Perceptions Of Software Professionals.
IEEE Software 33 (01 2015), 1-1. https://doi.org/10.1109/MS.2015.106
J. Vanhanen and H. Korpi. 2007. Experiences of Using Pair Program-
ming in an Agile Project. In 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07). 274b—274b.

J. Vanhanen and H. Korpi. 2007. Experiences of Using Pair Program-
ming in an Agile Project. In 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07). 274b-274b.

Jari Vanhanen and Casper Lassenius. 2005. Effects of pair programming
at the development team level: An experiment. 10 pp. https://doi.org/
10.1109/ISESE.2005.1541842

Jari Vanhanen and Casper Lassenius. 2007. Perceived Effects of Pair
Programming in an Industrial Context. Conference Proceedings of the
EUROMICRO, 211 - 218. https://doi.org/10.1109/EUROMICRO.2007.47
J. Vanhanen, C. Lassenius, and M. V. Mantyla. 2007. Issues and Tactics
when Adopting Pair Programming: A Longitudinal Case Study. In
International Conference on Software Engineering Advances (ICSEA
2007). 70-70.

Danny Weyns, M. Usman Iftikhar, Didac Gil de la Iglesia, and Tanvir
Ahmad. 2012. A Survey of Formal Methods in Self-Adaptive Systems.
In Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering (Montreal, Quebec, Canada) (C3S2E
’12). Association for Computing Machinery, New York, NY, USA, 67-79.
https://doi.org/10.1145/2347583.2347592

L. Williams and R.R. Kessler. 2003. Pair Programming Illuminated.
Addison-Wesley Longman Publishing Co., Inc. https://books.google.
com/books?id=LRQhdIrKNE8C

[67]

[68]

[69]

[70]

Alex Pawelczyk

L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries. 2000.
Strengthening the case for pair programming. IEEE Software 17, 4
(2000), 19-25.

L. Williams, A. Shukla, and A. I. Anton. 2004. An initial exploration of
the relationship between pair programming and Brooks’ law. In Agile
Development Conference. 11-20.

Franz Zieris and Lutz Prechelt. 2014. On Knowledge Transfer Skill
in Pair Programming. In Proceedings of the 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(Torino, Italy) (ESEM ’14). Association for Computing Machinery, New
York, NY, USA, Article 11, 10 pages. https://doi.org/10.1145/2652524.
2652529

F. Zieris and L. Prechelt. 2016. Observations on Knowledge Transfer
of Professional Software Developers during Pair Programming. In
2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). 242-250.

https://doi.org/10.1145/2591062.2591189
https://doi.org/10.1145/2591062.2591189
https://doi.org/10.1007/s10664-006-6404-6
https://doi.org/10.1007/s10664-006-6404-6
https://doi.org/10.1007/11499053_2
https://doi.org/10.1007/978-1-4302-0810-5_6
https://doi.org/10.1007/978-1-4302-0810-5_6
https://doi.org/10.1109/MS.2015.106
https://doi.org/10.1109/ISESE.2005.1541842
https://doi.org/10.1109/ISESE.2005.1541842
https://doi.org/10.1109/EUROMICRO.2007.47
https://doi.org/10.1145/2347583.2347592
https://books.google.com/books?id=LRQhdlrKNE8C
https://books.google.com/books?id=LRQhdlrKNE8C
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1145/2652524.2652529

	Abstract
	1 Introduction
	2 Related Work
	3 The Review Method
	3.1 Research Questions
	3.2 Identification of Relevant Literature
	3.3 Inclusion and Exclusion Criteria
	3.4 Quality Assessment
	3.5 Data Extraction

	4 Results
	4.1 Research Question 1
	4.2 Research Question 2
	4.3 Research Question 3
	4.4 Research Question 4

	5 Advice for Practitioners
	5.1 Investing in Better Software Quality
	5.2 Strategic Implementation of PP
	5.3 Embracing a Team-Oriented Culture

	6 Limitations
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

